Flow Framework
Release 7.0.x

Neos Team and Contributors

Jun 05, 2023

CONTENTS

1 Quickstart 3
1.1 WhatIsin This Guide? o e e e e e e 3
1.2 WhatIs Flow? e e e e 3
1.3 Imstalling Flow 0 o e e 3
1.4 Setting File Permissions o i i e e e e e e e e e e e e e e e 4
1.5 Settingupavirtual host L e e e e e 5
1.6 Testing the Installation e 5
1.7 Kickstarting a Package 7
1.8 HelloWorld e e e e e e 8
1.9 Database Setup o . e e e e e e e e e e e e e e e e e 9
110 Storing ObJects v v v o e 9
I.11 ACloser Look atthe Example e 11
112 NextSteps . . . o o v o e e e e e e 15
2 The Definitive Guide 17
2.1 PartI: Introduction and Fundamentals 17
2.2 PartIl: Getting Started e 38
2.3 PartIIl: Manual e e e 101
2.4 Part Vi AppendiXes v i e 349
2.5 ContribUtors e e e e e e 349
3 Publications Style Guide 355
3.1 AboutthisGuide oL e e 355
3.2 Styleand Usage o . e e e e e e e e e 355
3.3 Fontconventions v v v vt vt e e e e e e e e e e e e e e e e e e e 359

Flow Framework, Release 7.0.x

Flow is a free PHP framework licensed under the MIT license, developed to power the enterprise Neos CMS.

This version of the documentation covering Flow 7.0.x has been rendered at: Jun 05, 2023

Note: We’d love to get your feedback on this documentation! Please share your thoughts in our forum, or the
#flow-general channel in the Neos Project’s Slack.

Help is always greatly appreciated, read Contributing to Flow to find out how you can improve Flow.

CONTENTS 1

https://discuss.neos.io
https://slack.neos.io

Flow Framework, Release 7.0.x

2 CONTENTS

CHAPTER
ONE

QUICKSTART

1.1 What Is in This Guide?

This guided tour gets you started with Flow by giving step-by-step instructions for the development of a small sample
application. It will give you a first overview of the basic concepts and leaves the details to the full manual and more
specific guides.

Be warned that your head will be buzzed with several new concepts. But after you made your way through the
whitewater you’ll surely ride the wave in no time!

1.2 What Is Flow?

Flow is a PHP-based application framework which is especially well-suited for enterprise-grade applications. Its
architecture and conventions keep your head clear and let you focus on the essential parts of your application. Although
stability, security and performance are all important elements of the framework’s design, the fluent user experience is
the one underlying theme which rules them all.

As a matter of fact, Flow is easier to learn for PHP beginners than for veterans. It takes a while to leave behind old
paradigms and open up for new approaches. That being said, developing with Flow is very intuitive and the basic
principles can be learned within a few hours. Even if you don’t decide to use Flow for your next project, there are a
lot of universal development techniques you can learn.

Tip: This tutorial goes best with a Caffe Latte or, if it’s afternoon or late night already, with a few shots of Espresso

1.3 Installing Flow

Setting up Flow is pretty straight-forward. As a minimum requirement you will need:
* A web server (we recommend Apache with the mod_rewrite module enabled)
e PHP 7.2.0 or later
* A database supported by Doctrine DBAL, such as MySQL
* Command line access

Install Composer by following the installation instructions which boils down to this in the simplest case:

http://getcomposer.org/download/

Flow Framework, Release 7.0.x

curl -s https://getcomposer.org/installer | php

Note: Feel free to install the composer command to a global location, by moving the phar archive to e.g.
Jusr/local/bin/composer and making it executable. The following documentation assumes composer is installed
globally.

Tip: Running composer selfupdate from time to time keeps it up to date and can prevent errors caused by
composer not understanding e.g. new syntax in manifest files.

Then use Composer in a directory which will be accessible by your web server to download and install all packages of
the Flow Base Distribution. The following command will clone the latest version, include development dependencies
and keep git metadata for future use:

composer create-project ——keep-vcs neos/flow-base-distribution Quickstart

You will end up with a directory structure like this:

htdocs/ <-— depending on your web server
Quickstart/
Build/
Configuration/
Settings.yaml.example
Packages/
Framework/
Neos.Flow/

Web/ <-— your virtual host root will point to this
.htaccess
index.php

flow

flow.bat

1.4 Setting File Permissions

You will access Flow from both, the command line and the web browser. In order to provide write access to certain
directories for both, you will need to set the file permissions accordingly. But don’t worry, this is simply done by
changing to the Flow base directory (Quickstart in the above example) and calling the following command:

command line:

./flow core:setfilepermissions john www-data www-data

Please replace john by your own username. The second argument is supposed to be the username of your web server
and the last one specifies the web server’s group. For most installations on Mac OS X this would be both _www instead
of www-data.

It can and usually will happen that Flow is launched from the command line by a different user. All users who plan
using Flow from the command line need to join the web server’s group. On a Linux machine this can be done by

typing:

command line:

4 Chapter 1. Quickstart

Flow Framework, Release 7.0.x

sudo usermod —-a -G www-data john

On a Mac you can add a user to the web group with the following command:

command line:

’sudo dscl . —append /Groups/_www GroupMembership johndoe

You will have to exit your shell / terminal window and open it again for the new group membership to take effect.

Note: Setting file permissions is not necessary and not possible on Windows machines. For Apache to be able
to create symlinks, you need to use Windows Vista (or newer) and Apache needs to be started with Administrator
privileges.

1.5 Setting up a virtual host

It is very much recommended to create a virtual host configuration for Apache that uses the Web folder as the document
root. This has a number of reasons:

* it makes for nicer URLs
* it is more secure because that way access to anything else through the web is not possible
The latter point is really important!

For the rest of this tutorial we assume you have created a virtual host that can be reached through http://
quickstart/.

1.6 Testing the Installation

If your system is configured correctly you should now be able to access the Welcome screen:

’ http://quickstart/

If you did not follow our advice to create a virtual host, point your browser to the Web directory of your Flow
installation throughout this tutorial, for example:

’ http://localhost/Quickstart/Web/

The result should look similar to the screen you see in the screenshot. If something went wrong, it usually can be
blamed on a misconfigured web server or insufficient file permissions.

Note: If all you get is a 404, you might need to edit the .htaccess file in the Web folder to adjust the
RewriteBase directive as needed.

Note: Depending on your environment (especially on Windows systems) you might need to set the path to the PHP
binary in Configuration/Settings.yaml. If you copied the provided example Settings you only need to
uncomment the corresponding lines and adjust the path.

1.5. Setting up a virtual host 5

Flow Framework, Release 7.0.x

Getting Started

Here's how to get into the flow: Join the community

Contribute to Flow and Neos
Kickstart your first package Read the documentation

g:ldl?u;va r/apacheZ/htdocs/tutorials/Web/ Documentation

.fflow kickstart:package MyCompany.MyPackage Flow API

to create a package with a standard controller Coding guidelines
Known issues

Test your controller Getiired

“MyCompany.MyPackage” has either not yet been created or not activated. Start a thread in our forum

Follt tep 1 and reload thi: :
ollow step 1 and re is page Join us on Slack

If you named your package "SomethingElse” visit Report a bug
http://tutorial.local/SomethingElse/

Read the tutorial

Switch over to the Quickstart Tutorial to get the a first overview.

Deactivate the Welcome package (optional)

Deactivate the Welcome package with
./flow package:deactivate Neos.Welcome

Afterwards make sure to remove the “Welcome™ SubRoute definition from the
global routes in Configuration/Routes.yaml.

Fig. 1: The Flow Welcome Screen

6 Chapter 1. Quickstart

Flow Framework, Release 7.0.x

Tip: There are some friendly ghosts in our Slack channel and in the Discuss forum — they will gladly help you out if
you describe your problem as precisely as possible.

Some Note About Speed

The first request will usually take quite a while because Flow does a lot of heavy lifting in the background. It analyzes
code, builds up reflection caches and applies security rules. During all the following examples you will work in the so
called Development Context. It makes development very convenient but feels a lot slower than the Production Context
— the one you will obviously use for the application in production.

1.7 Kickstarting a Package

The actual code of an application and its resources — such as images, style sheets and templates — are bundled into
packages. Each package is identified by a globally unique package key, which consists of your company or domain
name (the so called vendor name) and further parts you choose for naming the package.

Let’s create a Demo package for our fictive company Acme:

$./flow kickstart:package Acme.Demo

Created .../Acme.Demo/Classes/Acme/Demo/Controller/StandardController.php
Created .../Acme.Demo/Resources/Private/Layouts/Default.html
Created .../Acme.Demo/Resources/Private/Templates/Standard/Index.html

The Kickstarter will create a new package directory in Packages/Application/ resulting in the following structure:

Packages/
Application/

Acme .Demo/
Classes/Acme/Demo/
Configuration/
Documentation/
Meta/

Resources/
Tests/

The kickstart : package command also generates a sample controller which displays some content. You should
be able to access it through the following URL:

’http://quickstart/Acme.Demo

Tip: In case your web server lacks mod_rewrite, it could be that you need to call this to access the controller:

’http://quickstart/index.php/Acme.Demo

If this the case, keep in mind to add index . php to the following URLs in this Quickstart tutorial.

1.7. Kickstarting a Package 7

https://neos-project.slack.com/messages/flow-general/
https://discuss.neos.io

Flow Framework, Release 7.0.x

1.8 Hello World

Let’s use the StandardController for some more experiments. After opening the respective class file in Pack-
ages/Application/Acme.Demo/Classes/Acme/Demo/Controller/ you should find the method indexAction() which is
responsible for the output you’ve just seen in your web browser:

public function indexAction(): void

{

Sthis->view->assign('foos', ['bar', 'baz']l);

}

Accepting some kind of user input is essential for most applications and Flow does a great deal of processing and
sanitizing any incoming data. Try it out — create a new action method like this one:

J ok *
* This action outputs a custom greeting
*
* @return string custom greeting
*/
public function helloAction(string S
{

ame) @ string

v

return 'Hello ' . Sname . '!';

}

Important: For the sake of simplicity the above example does not contain any input/output sanitation. If your
controller action directly returns something, make sure to filter the data!

Tip: You should always properly document all your functions and class properties. This will not only help other
developers to understand your code, but is also essential for Flow to work properly.

Now test the new action by passing it a name like in the following URL:

http://quickstart/Acme.Demo/Standard/hello?name=Robert

The path segments of this URL tell Flow to which controller and action the web request should be dispatched to. In
our example the parts are:

* Acme.Demo (package key)
e Standard (controller name)
¢ hello (action name)

If everything went fine, you should be greeted by a friendly “Hello Robert!”” — if that’s the name you passed to the
action. Also try leaving out the name parameter in the URL — Flow will complain about a missing argument.

8 Chapter 1. Quickstart

Flow Framework, Release 7.0.x

1.9 Database Setup

One important design goal for Flow was to let a developer focus on the business logic and work in a truly object-
oriented fashion. While you develop a Flow application, you will hardly note that content is actually stored in a
database. Your code won’t contain any SQL query and you don’t have to deal with setting up table structures.

But before you can store anything, you still need to set up a database and tell Flow how to access it. The credentials
and driver options need to be specified in the global Flow settings.

After you have created an empty database and set up a user with sufficient access rights, copy the file Configura-
tion/Settings.yaml.example to Configuration/Settings.yaml. Open and adjust the file to your needs — for a common
MySQL setup, it would look similar to this:

Neos:
Flow:
persistence:
backendOptions:
driver: 'pdo_mysgl'
dbname: 'quickstart'
user: 'root'
password: 'password'
host: '127.0.0.1"

adjust to your database name
adjust to your database user
adjust to your database password
adjust to your database host

HH= R W H

Note: If you are not familiar with the YAML format yet, there are two things you should know at least:
* Indentation has a meaning: by different levels of indentation, a structure is defined.

* Spaces, not tabs: you must indent with exactly 2 spaces per level, don’t use tabs.

If you configured everything correctly, the following command will create the initial table structure needed by Flow:

$./flow doctrine:migrate
Migrating up to 2011xxxxx00 from 0

++ migrating 2011xxxxx00
—> CREATE TABLE flow_resource_resourcepointer (hash VARCHAR (255) NOT NULL, PRIMARY
—> CREATE TABLE flow_resource_resource (persistence_object_identifier VARCHAR (40)

++ finished in 0.76

1.10 Storing Objects

Let’s take a shortcut here — instead of programming your own controller, model and view just generate some example
with the kickstarter:

$./flow kickstart:actioncontroller --generate-actions -—-generate-related Acme.Demo,,
—~CoffeeBean

Created .../Acme.Demo/Classes/Acme/Demo/Domain/Model/CoffeeBean.php

Created .../Acme.Demo/Tests/Unit/Domain/Model/CoffeeBeanTest.php

Created .../Acme.Demo/Classes/Acme/Demo/Domain/Repository/CoffeeBeanRepository.php
Created .../Acme.Demo/Classes/Acme/Demo/Controller/CoffeeBeanController.php

Omitted .../Acme.Demo/Resources/Private/Layouts/Default.html

Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/Index.html

Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/New.html

(continues on next page)

1.9. Database Setup 9

Flow Framework, Release 7.0.x

(continued from previous page)

Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/Edit.html

Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/Show.html

As new models were generated, do not forget to update the database schema with the
—respective doctrine:* commands.

Whenever a model is created or modified, the database structure needs to be adjusted to fit the new PHP code. This
is something you should do consciously because existing data could be altered or removed — therefore this step isn’t
taken automatically by Flow.

The kickstarter created a new model representing a coffee bean. For promoting the new structure to the database, just
run the doctrine:update command:

$./flow doctrine:update
Executed a database schema update.

Tip: In a real project you should avoid the doctrine :update command and instead work with migrations. See
the “Persistence” section of the The Definitive Guide for more details

A quick glance at the table structure (using your preferred database management tool) will reveal that a new table for
coffee beans has been created.

The controller rendered by the kickstarter provides some very basic functionality for creating, editing and deleting
coffee beans. Try it out by accessing this URL:

http://quickstart/Acme.Demo/CoffeeBean

Create a few coffee beans, edit and delete them and take a look at the database tables if you can’t resist ...

e 00 A list of coffee beans "

|. + | @ hup://localhost/Quickstart/Web/acme.demo/coffec. & | "IQ' Google)

+ Created a new coffee bean.

A list of coffee beans

+ Robusta Edit
| Delete |
+ Arabica Edit

| Delete |

Create a new coffee bean

Fig. 2: List and create coffee beans

10 Chapter 1. Quickstart

Flow Framework, Release 7.0.x

1.11 A Closer Look at the Example

In case you have been programming PHP for a while, you might be used to tackle many low-level tasks yourself:
Rendering HTML forms, retrieving and validating input from the superglobals $_GET, $_POST and $_FILES,
validating the input, creating SQL queries for storing the input in the database, checking for Cross-Site Scripting,
Cross-Site Request Forgery, SQL-Injection and much more.

With this background, the following complete code listing powering the previous example may seem a bit odd, if not
magical to you. Take a close look at each of the methods — can you imagine what they do?

use Acme\Demo\Domain\Model\CoffeeBean;
use Acme\Demo\Domain\Repository\CoffeeBeanRepository;

class CoffeeBeanController extends ActionController

{

J x*
* @Flow\Inject
* (@var CoffeeBeanRepository
*/
protected ScoffeeBeanRepository;

public function indexAction(): void

{

Sthis->view—->assign('coffeeBeans', Sthis->coffeeBeanRepository->findAll());

public function showAction (CoffeeBean ScoffeeBean): void

{

Sthis->view->assign('coffeeBean', S$coffeeBean);

public function newAction(): void
{
}

public function createAction(CoffeeBean S$newCoffeeBean): void
{
Sthis->coffeeBeanRepository->add($newCoffeeBean);
Sthis—->addFlashMessage ('Created a new coffee bean.');

Sthis—->redirect ('index"');

public function editAction(CoffeeBean ScoffeeBean): void

{

Sthis->view—->assign('coffeeBean', ScoffeeBean);

J kk
* @param CoffeeBean ScoffeeBean
* @return void
*/
public function updateAction (CoffeeBean ScoffeeBean) {
Sthis->coffeeBeanRepository->update (ScoffeeBean);
Sthis->addFlashMessage ('Updated the coffee bean.');
Sthis—->redirect ('index"');

(continues on next page)

1.11. A Closer Look at the Example 11

Flow Framework, Release 7.0.x

(continued from previous page)

public function deleteAction (CoffeeBean ScoffeeBean): void
{
Sthis—->coffeeBeanRepository->remove (ScoffeeBean);
Sthis->addFlashMessage ('Deleted a coffee bean.');

Sthis->redirect ('index"');

You will learn all the nitty-gritty details of persistence (that is storing and retrieving objects in a database), Model-View
Controller and validation in The Definitive Guide. With some hints for each of the actions of this controller though,
you’ll get some first impression of how basic operations like creating or deleting objects are handled in Flow.

Without further ado let’s take a closer look at some of the actions:

1.11.1 indexAction

The indexAction displays a list of coffee beans. All it does is fetching all existing coffee beans from a repository
and then handing them over to the template for rendering.

The CoffeeBeanRepository takes care of storing and finding stored coffee beans. The simplest operation it
provides is the findAll () method which returns a list of all existing Cof feeBean objects.

For consistency reasons only one instance of the Cof feeBeanRepository class may exist at a time. Otherwise
there would be multiple repositories storing Cof feeBean objects —and which one would you then ask for retrieving a
specific coffee bean back from the database? The Cof feeBeanRepository is therefore tagged with an annotation
stating that only a single instance may exist at a time:

VS
* @Flow\Scope ("singleton")
*/
class CoffeeBeanRepository extends Repository

{

Because PHP doesn’t support the concept of annotations natively, we are using doc comments which are parsed by an
annotation parser in Flow.

Flow’s object management detects the Scope annotation and takes care of all the details. All you need to do in order
to get the right Cof feeBeanRepository instance is telling Flow to inject it into a class property you defined:

J ok k
* @Flow\Inject
* @var CoffeeBeanRepository
*/
protected ScoffeeBeanRepository;

The Inject annotation tells Flow to set the S$coffeeBeanRepository right after the
CoffeeBeanController class has been instantiated.

Tip: This feature is called Dependency Injection and is an important feature of Flow. Although it is blindingly easy
to use, you’ll want to read some more about it later in the related section of the main manual.

Flow adheres to the Model-View-Controller pattern — that’s why the actual output is not generated by the action method
itself. This task is delegated to the view, and that is, by default, a Fluid template (Fluid is the name of the templating

12 Chapter 1. Quickstart

Flow Framework, Release 7.0.x

engine Flow uses). Following the conventions, there should be a directory structure in the Resources/Private/
Templates/ folder of a package which corresponds to the controllers and actions. For the index action of the
CoffeeBeanController the template Resources/Private/Templates/CoffeeBean/Index.html
will be used for rendering.

Templates can display content which has been assigned to femplate variables. The placeholder {name} will be
replaced by the actual value of the template variable name once the template is rendered. Likewise { cof feeBean.
name} is substituted by the value of the coffee bean’s name attribute.

The coffee beans retrieved from the repository are assigned to the template variable cof feeBeans. The template in
turn uses a for-each loop for rendering a list of coffee beans:

<f:for ecach="{coffeeBeans}" as="coffeeBean">
<1li>
{coffeeBean.name}
</1li>
</f:for>

1.11.2 showAction

The showAct ion displays a single coffee bean:

public function showAction (CoffeeBean Scoffes

{

Sthis->view->assign('coffeeBean',

The corresponding template for this action is stored in this file:

’Acme.Demo/Resources/Private/Templates/CoffeeBean/Show.html

This template produces a simple representation of the cof feeBean object. Similar to the indexAct ion the coffee
bean object is assigned to a Fluid variable:

’ﬁtri57>view7>assign(’coffeeBean', Scoffe

The showAction method requires a Cof feeBean object as its method argument. But we need to look into the
template of the indexAct ion again to understand how coffee beans are actually passed to the showAction.

In the list of coffee beans, rendered by the indexAction, each entry links to the corresponding showAct ion. The
links are rendered by a so-called view helper in the Fluid template Index . html:

<f:link.action action="show" arguments="{coffeeBean: coffeeBean}">...</f:link.action>

The interesting part is the {coffeeBean: coffeeBean} argument assignment: It makes sure that the
CoffeeBean object, stored in the cof feeBean template variable, will be passed to the showAction through
a GET parameter.

Of course you cannot just put a PHP object like the coffee bean into a URL. That’s why the view helper will render an
address like the following:

http://quickstart/acme.demo/coffeebean/show?
coffeeBean%5B__identity%5D=910c2440-eab6l-4%9a2-a68c-eel08abee4d29

1.11. A Closer Look at the Example 13

Flow Framework, Release 7.0.x

Instead of the real PHP object, its Universally Unique Identifier (UUID) was included as a GET parameter.

Note: That certainly is not a beautiful URL for a coffee bean — but you’ll learn how to create nice ones in the main
manual.

Before the showAct ion method is actually called, Flow will analyze the GET and POST parameters of the incoming
HTTP request and convert identifiers into real objects again. By its UUID the coffee bean is retrieved from the
CoffeeBeanRepository and eventually passed to the action method:

public function showAction (CoffeeBean ScoffeeBean): void

1.11.3 newAction

The newAction contains no PHP code — all it does is displaying the corresponding Fluid template which renders a
form.

1.11.4 createAction

The createAction is called when a form displayed by the newAction is submitted. Like the showAction it
expects a Cof feeBean as its argument:

public function createAction(CoffeeBean SnewCoffeeBean): void

->coffeeBeanRepository->add($newCoffeeBean) ;
s—>addFlashMessage ('Created a new coffee bean.');
Sthis->redirect ('index'");

This time the argument contains not an existing coffee bean but a new one. Flow knows that the expected type is
CoffeeBean (by the type hint in the method and the param annotation) and thus tries to convert the POST data sent
by the form into a new Cof feeBean object. All you need to do is adding it to the Coffee Bean Repository.

1.11.5 editAction

The purpose of the editAction is to render a form pretty much like that one shown by the newAction. But
instead of empty fields, this form contains all the data from an existing coffee bean, including a hidden field with the
coffee bean’s UUID.

The edit template uses Fluid’s form view helper for rendering the form. The important bit for the edit form is the form
object assignment:

<f:form action="update" object="{coffeeBean}" objectName="coffeeBean">

</f:form>

The object="{coffeeBean} " attribute assignment tells the view helper to use the cof feeBean template vari-
able as its subject. The individual form elements, such as the text box, can now refer to the coffee bean object
properties:

<f:form.textfield property="name" id="name" />

On submitting the form, the user will be redirected to the updateAction.

14 Chapter 1. Quickstart

Flow Framework, Release 7.0.x

1.11.6 updateAction

The updateAction receives the modified coffee bean through its $cof feeBean argument:

public function updateAction(CoffeeBean ScoffeeBean): void
{
Sthis—->coffeeBeanRepository—->update (ScoffeeBean);
Sthis->addFlashMessage ('Updated the coffee bean.');
Sthis->redirect ('index');

Although this method looks quite similar to the createAction, there is an important difference you should be
aware of: The parameter passed to the updateAction is an already existing (that is, already persisted) coffee bean
object with the modifications submitted by the user already applied.

Any modifications to the Cof feBean object will be lost at the end of the request unless you tell Flow explicitly to
apply the changes:

Sthis->coffeeBeanRepository->update (ScoffeeBean);

This allows for a very efficient dirty checking and is a safety measure - as it leaves control over the changes in your
hands.

Speaking about safety measures: it’s important to know that Flow supports the notion of “safe request methods”.
According to the HTTP 1.1 specification, GET and HEAD requests should not modify data on the sever side. Since
we consider this a good principle, Flow will not persist any changes automatically if the request method is “safe”. So
... don’t use regular links for deleting your coffee beans - send a POST or DELETE request instead.

1.12 Next Steps

Congratulations! You already learned the most important concepts of Flow development.

Certainly this tutorial will have raised more questions than it answered. Some of these concepts — and many more you
will learn — take some time to get used to. The best advice I can give you is to expect things to be rather simple and
not look out for the complicated solution (you know, the not to see the wood for the trees thing .. .).

Next you should experiment a bit with Flow on your own. After you’'ve collected even more questions, I suggest
reading the Getting Started Tutorial.

At the time of this writing, The Definitive Guide is not yet complete and still contains a few rough parts. Also the
Getting Started Tutorial needs some love and restructuring. Still, it already may be a valuable source for further
information and I recommend reading it.

Get in touch with the growing Flow community and make sure to share your ideas about how we can improve Flow
and its documentation:

¢ Slack channel
¢ Discuss forum

I am sure that, if you’re a passionate developer, you will love Flow — because it was made with you, the developer, in
mind.

Happy Flow Experience!

Robert on behalf of the Neos team

1.12. Next Steps 15

https://neos-project.slack.com/messages/flow-general/
https://discuss.neos.io

Flow Framework, Release 7.0.x

16 Chapter 1. Quickstart

CHAPTER
TWO

THE DEFINITIVE GUIDE

2.1 Part I: Introduction and Fundamentals

2.1.1 Introduction

What is Flow?

Flow is a web application platform enabling developers to create excellent web solutions. It gives you fast results. It
is a reliable foundation for complex applications. And it is backed by one of the biggest PHP communities.

The Epic Forward

The Definitive Guide is meant to be a technical resource for documentation of both Flow usage as well as the theories,
patterns and practices to be used in effective Flow development. While the community and the authors of this guide will
remain objective when presenting concepts, the information found herein may be strongly biased both positively and
negatively for and/or against other known software development methods and practices. While the practices adopted in
this guide are not the only ones possible, nor necessarily the right ones for all projects, they are the generally accepted
“Best Practices” that surround the design decisions and direction that have been taken by Flow and its contributors to
date.

The fanatical adoption of the processes, procedures and methodologies as outlined in the guide will enabled you to
work faster, smarter and produce the best possible results when working within the Flow framework. Flow was created
to complete a missing piece not available to the PHP developer community. Many of the comparable systems found in
various other languages are based on proprietary technologies or based on languages that require additional layers or
systems to build and run applications. A primary reason for this was that due to some initial shortcomings of earlier
versions of PHP, it was not accepted as an “Enterprise” language as opposed to a .NET or Java.

With the emergence of PHP 5.3 and the feature set it has brought with it, a better ecosystem of PHP frameworks is
now possible. Flow aims to implement a set of software design and development principles that have been proven to
produce organized, highly extensible applications which can evolve over time with the demands and changes of their
domain.

17

Flow Framework, Release 7.0.x

Parts of The Guide

Part I: Introduction and Fundamentals

In this section, you will get an overview of the underlying patterns and practices that are implemented into Flow at its
core. After reading this section, you should have a concise and informed understanding of theories and methodologies
that are involved in building a Flow application using “Best Practices”.

Part I1: Getting Started

In Getting Started, you will learn how to get a Flow application setup and ready to go. You will also be introduced to
the basic building blocks for a Flow application and its packages.

Part III: Manual

As is the case with any manual, this section will focus on how to use the various pieces and mechanisms found within
Flow. This will include descriptions of what each component does and example code of how to use or implement it
into your application.

Part I'V: Deployment and Administration

Learning to build an application based on Flow is one thing, but equally important is understanding how to deploy
your application into the wild, and then how to maintain and support it once it’s live. The guide has dedicated an entire
section to ensuring you know the ins and outs of publishing and maintaining an application built on Flow.

Part V: Appendixes

Any framework is only as good as its ability to communicate clearly on the frameworks intent and design to its
community. While a ubiquitous language around design patterns helps, the appendixes section aim to make getting
to specific documentation and topic references more efficient. This section is much more effective when used after
having read through the guide, acting as a quick reference for previously learned concepts.

2.1.2 Object-Oriented Programming

Object-oriented programming is a Programming Paradigm, applied in Flow and the Packages built on it. In this section
we will give an overview of the basic concepts of Object Orientation.

Programs have a certain purpose, which is - generally speaking - to solve a problem. “Problem” does not necessarily
mean error or defect but rather an actual task. This Problem usually has a concrete counterpart in real life.

A Program could for example take care of the task of booking a cruise in the Indian Ocean. If so we obviously
have a problem (a programmer that has been working to much and finally decided to go on vacation) and a program,
promising recuperation by booking a coach on one of the luxury liners for him and his wife.

Object Orientation assumes that a concrete problem is to be solved by a program, and a concrete problem is caused by
real objects. Therefore focus is on the object. This can be abstract of course: it will not be something as concrete as a
car or a ship all the time, but can also be a reservation, an account or a graphical symbol.

objects are “containers” for data and corresponding functionality. The data of an object is stored in its Properties.
The functionality is provided by Methods, which can for example alter the properties of the object. In regard to the
cruise liner we can say, that it has a certain amount of coaches, a length and width and a maximum speed. Further it
has methods to start the motor (and hopefully to stop it again also), change the direction as well as to increase thrust,
for you can reach your holiday destination a bit faster.

18 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Why Object Orientation after all?

Surely some users will ask themselves why they should develop object oriented in the first place. Why not (just like
until now) keep on developing procedural, thus stringing together functions? Because procedural programming has
some severe disadvantages:

* Properties and methods belonging together with regard to content can not be united. This methodology, called
Encapsulation in Object Orientation, is necessary, if only because of clear arrangement.

* It is rather difficult to re-use code
 All properties can be altered everywhere throughout the code. This leads to hard-to-find errors.
* Procedural code gets confusing easily. This is called Spaghetti code.

Furthermore Object Orientation mirrors the real world: Real objects exist, and they all have properties and (most of
them) methods. This fact is now represented in programming.

In the following we’ll talk about the object ship. We’ll invoke this object, stock it with coaches, a motor and other
useful stuff. Furthermore, there will be functions, moving the ship, thus turning the motor on and off. Later we’ll even
create a luxury liner based on the general ship and equip it with a golf simulator and satellite TV.

On the following pages, we’ll try to be as graphic as possible (but still semantically correct) to familiarize you with
object orientation. There is a specific reason: The more you can identify with the object and its methods, the more
open you’ll be for the theory behind Object Oriented Programming. Both is necessary for successful programming —
even though you’ll often not be able to imagine the objects you’ll later work with as clearly as in our examples.

Classes and Objects

Let’s now take a step back and imagine there’d be a blueprint for ships in general. We now focus not the ship but this
blueprint. It is called class, in this case it is the class Ship. In PHP this is written as follows;

PHP Code:

<?php

class Ship {

2>

Note: In this piece of code we kept noting the necessary PHP tags at the beginning and end. We will spare them in
the following examples to make the listings a bit shorter.

The key word class opens the class and inside the curly brackets properties and methods are written. we’ll now add
these properties and methods:

PHP Code:

class Ship {

public S$name
public -
public Sengi

(continues on next page)

2.1. Part l: Introduction and Fundamentals 19

Flow Framework, Release 7.0.x

(continued from previous page)

public Sspeed;

function startEngine() {}
function stopEngine () {}
function moveTo (Slocation) {}

Our ship now has a name ($name), a number of coaches ($coaches) and a speed ($speed). In addition we built in
a variable, containing the status of the engine ($engineStatus). A real ship, of course, has much more properties,
all important somehow — for our abstraction these few will be sufficient though. We’ll focus on why every property is
marked with the key word pub1lic further down.

Note: For methods and properties we use a notation called lowerCamelCase: The first letter is lower case and all
other parts are added without blank or underscore in upper case. This is a convention used in Flow.

We can also switch on the engine (startEngine()), travel with the ship to the desired destination
(moveTo ($location)) and switch off the engine again (stopEngine ()). Note that all methods are empty,
i.e. we have no content at all. We’ll change this in the following examples, of course. The line containing method
name and (if available) parameters is called method signature or method head. Everything contained by the method
ist called method body accordingly.

Now we’ll finally create an object from our class. The class ship will be the blueprint and $fidelio the concrete
object.

PHP Code:

Sfidelio = new Ship();

// Display the object
var_dump (Sfidelio);

The key word new is used to create a concrete object from the class. This object is also called Instance **and the
creation process consequentially **Instantiation. We can use the command var_dump () to closely examine the
object. We’ll see the following

PHP Code:

object (Ship) #1 (3) {
["name"] => null
["coaches"] => null
["engineStatus"] => null

["speed"] => null

We can clearly see that our object has 4 properties with a concrete value, at the moment still null, for we did not yet
assign anything. We can instantiate as many objects from a class as we like, and every single one will differ from the
others — even if all of the properties have the same values.

PHP Code:

20 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Sfideliol = new Ship();
sfidelio2 = new Ship();
if (Sfideliol === S$fidelio2) {
echo 'objects are identical!'
} else {

echo 'objects are not identical!'’

In this example the output is objects are not identical!

The arrow operator

We are able to create an object now, but of course it’s properties are still empty.We’ll hurry to change this by assigning
values to the properties. For this, we use a special operator, the so called arrow operator (->). We can use it for getting
access to the properties of an object or calling methods. In the following example, we set the name of the ship and call
some methods:

PHP Code:

1ip = new Ship();
ship->name = "FIDELIO";

echo "The ship's Name is ". S$c¢

$ship->startEngine () ;
1ip—>moveTo ('Bahamas') ;
Sship->stopEngine () ;

$this

Using the arrow operator we can now comfortably access properties and methods of an object. But what to do, if we
want to do this from inside a method, e.g. to set Sspeed ~“inside of the method ~“startEngine()?
We don’t know at this point, how an object to be instantiated later will be called. So we need a mechanism to do this
independent from the name. This is done with the special variable $this.

PHP Code:

class Ship {

public Sspeed;

function startEngine () {

Sthis->speed = 200;

With $this—>speed you can access the property speed in the actual object, independently of it’s name.

2.1. Part l: Introduction and Fundamentals 21

Flow Framework, Release 7.0.x

Constructor

It can be very useful to initialize an object at the Moment of instantiating it. Surely there will be a certain number of
coaches built in right away, when a new cruise liner is created - so that the future guest will not be forced to sleep in
emergency accommodation. So we can define the number of coaches right when instantiating. The processing of the
given value is done in a method automatically called on creation of an object, the so called Constructor. This special
method always has the name ___construct () (the first two characters are underscores).

The values received from instantiating are now passed on to the constructor as Argument and then assigned to the
properties $Scoaches ~“respectively ~~S$name.

Inheritance of Classes

With the class we created we can already do a lot. We can create many ships and send them to the oceans of the
world. But of course the shipping company always works on improving the offer of cruise liners. Increasingly big and
beautiful ships are built. Also new offers for the passengers are added. FIDELIO2, for example, even has a little golf
course based on deck.

If we look behind the curtain of this new luxury liner though, we find that the shipping company only took a ship type
FIDELIO and altered it a bit. The basis is the same. Therefore it makes no sense to completely redefine the new ship —
instead we use the old definition and just add the golf course — just as the shipping company did. Technically speaking
we extend an “old” class definition by using the key word extends.

PHP Code:

class LuxuryLiner extends Ship ({
public $luxuryCoaches;
function golfSimulatorStart () {

echo 'Golf simulator on ship Sthis—->name . '

started.';

function golfSimulatorStop () {

echo 'Golf simulator on ship ' . S$this->name . '
stopped.';
}
}
SluxuryShip = new LuxuryLiner ('FIDELIO2','600")

Our new luxury liner comes into existence as easy as that. We define, that the luxury liner just extends the Definition
of the class Ship. The extended class (in or example Ship) is called parent class **or **superclass. The class
formed by Extension (in our example LuxuryLiner) is called child class **or **sub class.

The class LuxuryLiner now contains the complete configuration of the base class Ship (including all properties
and methods) and defines additional properties (like the amount of luxury coaches in $1uxuryCoaches) and addi-
tional methods (like golfSimulatorStart () and golfSimulatorStop ()). Inside these methods you can
again access the properties and methods of the parent class by using $this.

22 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Overriding Properties and Methods

Inside an inherited class you can not only access properties and methods of the parent class or define new ones. It’s
even possible to override the original properties and methods. This can be very useful, e.g. for giving a method of a
child class a new functionality. Let’s have a look at the method startEngine () for example:

PHP Code:

class Ship {
SengineStatus = 'OFF';
function startEngine () {

Sthis->engineStatus = 'ON';

}

class Luxusliner extends Ship {
SadditionalEngineStatus = 'OFF';
function startEngine () {

Sthis->engineStatus = 'ON';
$this->additionalEngineStatus = 'ON';

Our luxury liner (of course) has an additional motor, so this has to be switched on also, if the method
startEngine () is called. The child class now overrides the method of the parent class and so only the method
startEngine () of the child class is called.

Access to the parent class through “parent”

Overriding a method comes in handy, but has a serious disadvantage. When changing the method startEngine ()
in the parent class, we’d also have to change the method in the child class. This is not only a source for errors but also
kind of inconvenient. It would be better to just call the method of the parent class and then add additional code before
or after the call. That’s exactly what can be done by using the key word parent. With parent : :methodname ()
the method of the parent class can be accessed comfortably - so our former example can be re-written in a smarter
way:

PHP Code:

class Ship {

SengineStatus = 'OFF';

function startEngine () {
Sthis->engineStatus = 'ON';

}

class Luxusliner extends Ship ({

(continues on next page)

2.1. Part l: Introduction and Fundamentals 23

Flow Framework, Release 7.0.x

(continued from previous page)

SadditionalEngineStatus = 'OFF';

function startEngine () {
parent: :startEngine();
S$this->additionalEngineStatus = 'ON';

Abstract classes

Sometimes it is useful to define “placeholder methods” in the parent class which are filled in the child class. These
“placeholders” are called abstract methods. A class containing abstract methods is called abstract class. For our
ship there could be a method setupCoaches (). Each type of ship is to be handled differently for each has a proper
configuration. So each ship must have such a method but the concrete implementation is to be done separately for
each ship type.

PHP Code:

abstract class Ship {

function _ construct () {
Sthis->setupCoaches () ;
}

abstract function setupCoaches();

class Luxusliner extends Ship ({

function setupCoaches () {
echo 'Coaches are being set up';

}

Sluxusschiff = new Luxusliner();

In the parent class we have defined only the body of the method setupCoaches (). The key word abstract
makes sure that the method must be implemented in the child class. So using abstract classes, we can define which
methods have to be present later without having to implement them right away.

Interfaces

Interfaces are a special case of abstract classes in which all methods are abstract. Using Interfaces, specification and
implementation of functionality can be kept apart. In our cruise example we have some ships supporting satellite TV
and some who don’t. The ships who do, have the methods enableTV () and disableTV (). It is useful to define
an interface for that:

PHP Code:

interface SatelliteTV {
public function enableTV () ;
public function disableTV () ;

(continues on next page)

24 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

class Luxusliner extends Ship implements SatelliteTV ({
protected StvEnabled = false;

public function enableTV () {
Sthis->tvEnabled = true;

}

public function disableTV () {
Sthis->tvEnabled = false;

Using the key word implements it is made sure, that the class implements the given interface. All methods in the
interface definition then have to be realized. The object LuxuryLiner now is of the type Ship but also of the type
SatelliteTV. It is also possible to implement not only one interface class but multiple, separated by comma. Of
course interfaces can also be inherited by other interfaces.

Visibilities: public, private and protected

Access to properties and methods can be restricted by different visibilities to hide implementation details of a class.
The meaning of a class can be communicated better like this, for implementation details in internal methods can not
be accessed from outside. The following visibilities exist:

 public: properties and methods with this visibility can be accessed from outside the object. If no Visibility is
defined, the behavior of public is used.

* protected: properties and methods with visibility protected can only be accessed from inside the class and
it’s child classes.

e private: properties and methods set to private can only be accessed from inside the class itself, not from
child classes.

Access to Properties

This small example demonstrates how to work with protected properties:

PHP Code:

abstract class Ship {
protected Scoaches;

abstract protected function setupCoaches();

class Luxusliner extends Ship ({

protected function setupCoaches () {
Sthis->coaches = 300;
}
}
S$luxusliner new Luxusliner ('Fidelio', 100);

echo 'Number of coaches: ' . S$luxusliner->coaches; // Does NOT work!

2.1. Part l: Introduction and Fundamentals 25

Flow Framework, Release 7.0.x

The LuxuryLiner may alter the property coaches, for this is protected. If it was private no access from
inside of the child class would be possible. Access from outside of the hierarchy of inheritance (like in the last line of
the example) is not possible. It would only be possible if the property was public.

We recommend to define all properties as protected. Like that, they can not be altered any more from outside and
you should use special methods (called getter and setter) to alter or read them. We’ll explain the use of these methods
in the following section.

Access to Methods

All methods the object makes available to the outside have to be defined as public. All methods containing imple-
mentation details, e.g. setupCoaches () in the above example, should be defined as protected. The visibility
private should be used most rarely, for it prevents methods from being overwritten or extended.

Often you’ll have to read or set properties of an object from outside. So you’ll need special methods that are able to
set or get a property. These methods are called setter respectively getter. See the example.

PHP Code:

class Ship {

protected S« s;
protected Sclassification = 'NORMAL';

public function getCoaches () {
return Sthis->coaches;

}

public function setCoaches (SnumberOfCoaches) {
if (Snumk OfCoaches > 500) {
Sthis—->classification = 'LARGE';
} else {
Sthis->classification = 'NORMAL';
}
$this—->coaches = S$SnumberOfCoaches;
}
public function getClassification() {

return Sthis->classification;

}

We now have a method setCoaches () which sets the number of coaches. Furthermore it changes - depending
on the number of coaches - the ship category. You now see the advantage: When using methods to get and set
the properties, you can perform more complex operations, as e.g. setting of dependent properties. This preserves
consistency of the object. If you set $coaches and $Sclassification to public, we could set the number of
cabins to 1000 and classification to NORMAL - and our ship would end up being inconsistent.

Note: In Flow you’ll find getter and setter methods all over. No property in Flow is set to public.

26 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Static Methods and Properties

Until now we worked with objects, instantiated from classes. Sometimes though, it does not make sense to generate
a complete object, just to be able to use a function of a class. For this php offers the possibility to directly access
properties and methods. These are then referred to as static properties respectively static methods.
Take as a rule of thumb: static properties are necessary, every time two instances of a class are to have a common
property. Static methods are often used for function libraries.

Transferred to our example this means, that all ships are constructed by the same shipyard. in case of technical
emergency, all ships need to know the actual emergency phone number of this shipyard. So we save this number in a
static property $shipyardSupportTelephoneNumber:

PHP Code:

class Luxusliner extends Ship ({
protected static SshipyardSupportTelephoneNumber = '+49 30 123456';

public function reportTechnicalProblem() {

echo 'On the ship ' . S$this->name . ' a problem has been discovered.
Please inform ' . self::$shipyardSupportTelephoneNumber;

public static function setShipyardSupportTelephoneNumber (SnewNumber) {

self::SshipyardSupportTelephoneNumber = SnewNumber;
}
}
$fidelio = new Luxusliner('Fidelio', 100);
Sfigaro = new Luxusliner ('Figaro', 200);

sfidelio->reportTechnicalProblem();
$figaro->reportTechnicalProblem() ;

Luxusliner: :setShipyardSupportTelephoneNumber ('+01 1000");

Sfidelio->reportTechnicalProblem();
Sfigaro->reportTechnicalProblem() ;

// Output

On the ship Fidelio a problem has been discovered. Please inform +49 30 123456
On the ship Figaro a problem has been discovered. Please inform +49 30 123456
On the ship Fidelio a problem has been discovered. Please inform +01 1000

On the ship Figaro a problem has been discovered. Please inform +01 1000

What happens here? We instantiate two different ships, which both have a problem and do con-
tact the shipyard. Inside the method reportTechnicalProblem() you see that if you want
to use static properties, you have to trigger them with the key word self::. If the emer-
gency phone number now changes, the shipyard has to tell all the ships about the new number.
For this it uses the static method setShipyardSupportTelephoneNumber ($SnewNumber). For
the method is static, it is called through the scheme classname::methodname (), in our case
LuxuryLiner: :setShipyardSupportTelephoneNumber (...). If you check the latter two problem re-
ports, you see that all instances of the class use the new phone number. So both ship objects have access to the same
static variable $shipyardSupportTelephoneNumber.

2.1. Part l: Introduction and Fundamentals 27

Flow Framework, Release 7.0.x

Important design- and architectural patterns

In software engineering you’ll sooner or later stumble upon design problems that are connatural and solved in a similar
way. Clever people thought about design patterns aiming to be a general solution to a problem. Each design pattern is
so to speak a solution template for a specific problem. We by now have multiple design patterns that are successfully
approved in practice and therefore have found there way in modern programming and especially Flow. In the following
we don’t want to focus on concrete implementation of the design patterns, for this knowledge is not necessary for the
usage of Flow. Nevertheless deeper knowledge in design patterns in general is indispensable for modern programming
style, so it might be fruitful for you to learn about them.

Tip: Further information about design patterns can e.g. be found on http://sourcemaking.com/ or in the book PHP
Design Patterns by Stephan Schmidt, published by O’Reilly.

From the big number of design patterns, we will have a closer look on two that are essential when programming with
Flow: Singleton & Prototype.

Singleton

This design pattern makes sure, that only one instance of a class can exist at a time. In Flow you can mark a class as
singleton by annotating it with @Flow\Scope ("singleton"). An example: our luxury liners are all constructed
in the same shipyard. So there is no sense in having more than one instance of the shipyard object:

PHP Code:

VS
* @Flow\Scope ("singleton")
*/
class LuxuslinerShipyard ({
protected SnumberOfShipsBuilt = 0;

public function getNumberOfShipsBuilt () {
return S$this->numberOfShipsBuilt;

public function buildShip () {
Sthis->numberOfShipsBuilt++;
// Schiff bauen und zuriickgeben

SluxuslinerShipyard = new LuxuslinerShipyard();
~Shipyard->buildShip () ;

Sluxusline

ard = new LuxuslinerShipyard();
StheSameLuxuslinerShipyard->buildShip () ;

$theSameLuxuslinerShipy

echo $luxuslinerShipyard->getNumberOfShipsBuilt (); // 2
echo $theSamelLuxuslinerShipyard->getNumberOfShipsBuilt(); // 2

28 Chapter 2. The Definitive Guide

http://sourcemaking.com/

Flow Framework, Release 7.0.x

Prototype

Prototype is sort of the antagonist to Singleton. While for each class only one object is instantiated when using
Singleton, it is explicitly allowed to have multiple instances when using Prototype. Each class annotated with @F1ow\
Scope ("prototype") is of type Prototype. Since this is the default scope, you can safely leave this one out.

Note: Originally for the design pattern Prototype is specified, that a new object is to be created by cloning an object
prototype. We use Prototype as counterpart to Singleton, without a concrete pattern implementation in the background,
though. For the functionality we experience, this does not make any difference: We invariably get back a new instance
of a class.

Now that we refreshed your knowledge of object oriented programming, we can take a look at the deeper concepts of
Flow: Domain Driven Design, Model View Controller and Test Driven Development. You’ll spot the basics we just
talked about in the following frequently.

2.1.3 Essential Design Patterns

Flow Paradigm

Flow was designed from the ground up to be modular, adaptive and agile to enable developers of all skill levels to
build maintainable, extensible and robust software through the implementation of several proven design paradigms.
Building software based on these principles will allow for faster, better performing applications that can be extended
to meet changing requirements while avoiding inherent problems introduced by traditional legacy code maintenance.
Flow aims to make what you “should” do what you “want” to do by providing the framework and community around
best practices in the respective essential design patterns.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm which complements Object-Oriented Programming
(OOP) by separating concerns of a software application to improve modularization. The separation of concerns (SoC)
aims for making a software easier to maintain by grouping features and behavior into manageable parts which all have
a specific purpose and business to take care of.

OOP already allows for modularizing concerns into distinct methods, classes and packages. However, some concerns
are difficult to place as they cross the boundaries of classes and even packages. One example for such a cross-cutting
concern is security: Although the main purpose of a Forum package is to display and manage posts of a forum, it has to
implement some kind of security to assert that only moderators can approve or delete posts. And many more packages
need a similar functionality for protect the creation, deletion and update of records. AOP enables you to move the
security (or any other) aspect into its own package and leave the other objects with clear responsibilities, probably not
implementing any security themselves.

Tip: Planning out the purpose and use cases of a package before you create it will allow for backwards compatibility
by creating an unchanging interface for independent classes to consume.

2.1. Part l: Introduction and Fundamentals 29

Flow Framework, Release 7.0.x

Dependency Injection

In AQOP there is focus on building reusable components that can be wired together to create a cohesive architecture.
This goal becomes increasingly difficult because as the size and complexity of an application expands, so does its
dependencies. One technique to aliviate dependency management is through Dependency Injection (DI).

Dependency Injection (DI) is a technique by which a package can request and gain access to another package simply
by asking the injector. An injector is the service provided within a framework to instantiate and provide access to
package interfaces upon request.

DI enables a package to control what dependencies it requires while allowing the framework or another third party
system to handle the fullfillment of each dependency. This is know as Inversion of Control (IoC). IoC delegates the
responsibility of dependency resolution to the framework while each package specifies which dependencies it needs.

AOP provides a means for interaction between packages through various interfaces and aspect. Without Dependency
Injection AOP would suffer from creating untestable code by requiring you to manage dependencies in the constructor
and thus breaking the Law of Demeter by allowing a package to “look” for its dependencies with a system instead of
“asking” for them through the autonomous injector.

Test Driven Development

Test Driven Development (TDD) is a means in which a developer can explore, implement and verify various indepen-
dent pieces of an application in order to deliver stable and maintainable code. TDD has become popular in mainstream
development because the first step required is to think about what the purpose of a class or method is in the scope
of your package’s feature requirements incrementally, revising and refining small pieces of code while maintaining
overall integrity of the system as whole.

Five Steps of Test Driven Development

1. Think: Before you write anything, consider what is required of the code you are about to create.

2. Frame: Write the simplest test possible, less than five lines of code or so that describe what you expect the
method to do.

3. Fulfill: Again, write a small amount of code to meet the expectations of your test so that is passes. (It’s
acceptable to hard code variables and returns as you explore and think about the method, cleaning it up as you

£0.)

4. Re-factor: Now that you have a simple passing test, you know that your code as it stands works and can work
on making it better while keeping an eye on if it breaks of not. Think about ways to improve your code by
removing duplication and other “ugly” code until you feel it looks correct. Re-run the tests and make sure it still
passes, if not, fix it.

5. Repeat: Do it again. Look at your test to make sure you are testing what it should do, not what it is doing. Add
to your test if you find something missing and continue looping through the process until you’re happy that the
code can’t be made any clearer with its current set of requirements. The more times you repeat, the better the
resulting code will be.

30 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Domain Driven Design

Domain-driven Design (DDD) is a practice where an implementation is deeply coupled with the evolving business
model within its respective domain. Typically when working with DDD, technical experts are paired with a domain
experts to ensure that each iteration of a system is getting closer to the core problem.

DDD relies on the following foundational elements:
* Domain: An ontology of concepts related to a specific area of knowledge and information.
* Model: An abstract system that describes the various aspects of a domain.

» Ubiquitous Language: A glossary of language structured around a domain model to connect all aspects
of a model with uniformed definitions.

¢ Context: The relative position in which an expression of words are located that determine it’s overall
meaning.

In DDD the Domain Model that is formed is a guide or measure of the overall implementation of an applications
relationship to the core requirements of the problem it is trying to solve. DDD is not a specific technique or way of
developing software, it is a system to ensure that the desired result and end result of a development iteration or aligned.
For this reason, DDD is often coupled with TDD and AOP.

2.1.4 Domain-Driven Design

Domain-Driven Design is a development technique which focuses on understanding the customer’s problem domain. It
not only contains a set of technical ideas, but it also consists of techniques to structure the creativity in the development
process.

The key of Domain-Driven Design is understanding the customers needs, and also the environment in which the
customer works. The problem which the to-be-written program should solve is called the problem domain, and in
Domain-Driven Design, development is guided by the exploration of the problem domain.

While talking to the customer to understand his needs and wishes, the developer creates a model which reflects the
current understanding of the problem. This model is called Domain Model because it should accurately reflect the
problem domain of the customer. Then, the domain model is tested with real use-cases, trying to understand if it fits to
the customer’s processes and way of working. Then, the model is refined again — and the whole process of discussion
with the customer starts again. Thus, Domain-Driven Design is an iterative approach to software development.

Still, Domain-Driven Design is very pragmatic, as code is created very early on (instead of extensive requirements
specifications); and real-world problems thus occur very early in the development process, where they can be easily
corrected. Normally, it takes some iterations of model refinement until a domain model adequately reflects the problem
domain, focusing on the important properties, and leaving out unimportant ones.

In the following sections, some core components of Domain-Driven Design are explained. It starts with an approach
to create a ubiquitous language, and then focuses on the technical realization of the domain model. After that, it is
quickly explained how Flow enables Domain-Driven Design, such that the reader gets a more practical understanding
of it.

Note: We do not explain all details of Domain-Driven Design in this work, as only parts of it are important for the
general understanding needed for this work. More information can be found at [Evans].

2.1. Part l: Introduction and Fundamentals 31

Flow Framework, Release 7.0.x

Creating a Ubiquitous Language

In a typical enterprise software project, a multitude of different roles are involved: For instance, the customer is an
expert in his business, and he wants to use software to solve a certain problem for him. Thus, he has a very clear idea
on the interactions of the to-be-created software with the environment, and he is one of the people who need to use the
software on a daily basis later on. Because he has much knowledge about how the software is used, we call him the
Domain Expert.

On the other hand, there are the developers who actually need to implement the software. While they are very skilled in
applying certain technologies, they often are no experts in the problem domain. Now, developers and domain experts
speak a very different language, and misconceptions happen very often.

To reduce miscommunication, a ubiquitous language should be formed, in which key terms of the problem domain
are described in a language understandable to both the domain expert and the developer. Thus, the developers learn to
use the correct language of the problem domain right from the beginning, and can express themselves in a better way
when discussing with the domain expert. Furthermore, they should also use the ubiquitous language throughout all
parts of the project: Not only in communication, design documents and documentation, but the key terms should also
appear in the domain model. Names of classes, methods and properties are also part of the ubiquitous language.

By using the language of the domain expert also in the code, it is possible to discuss about difficult-to-specify func-
tionality by looking at the code together with the domain expert. This is especially helpful for complex calculations
or difficult-to-specify condition rules. Thus, the domain expert can decide whether the business logic was correctly
implemented.

Creating a ubiquitous language involves creating a glossary, in which the key terms are explained in a way both
understandable to the domain expert and the developer. This glossary is also updated throughout the project, to reflect
new insights gained in the development process.

Modelling the domain

Now, while discussing the problem with the domain expert, the developer starts to create the domain model, and
refines it step by step. Usually, UML is employed for that, which just contains the relevant information of the problem
domain.

The domain model consists of objects (as DDD is a technique for object-oriented languages), the so-called Domain
Objects.

There are two types of domain objects, called Entities and Value Objects. If a domain object has a certain identity
which stays the same as the objects changes its state, the object is an entity. Otherwise, if the identity of an object is
only defined from all properties, it is a value object. We will now explain these two types of objects in detail, including
practical use-cases.

Furthermore, association mapping is explained, and aggregates are introduced as a way to further structure the code.

Entities

Entities have a unique identity, which stays the same despite of changes in the properties of the object. For example, a
user can have a user name as identity, a student a matriculation ID. Although properties of the objects can change over
time (for example the student changes his courses), it is still the same object. Thus, the above examples are entities.

The identity of an object is given by an immutable property or a combination of them. In some use-cases it can make a
lot of sense to define identity properties in a way which is meaningful in the domain context: If building an application
which interfaces with a package tracking system, the tracking ID of a package should be used as identity inside the
system. Doing so will reduce the risk of inconsistent data, and can also speed up access.

For some domain objects like a Person, it is highly dependent on the problem domain what should be used as
identity property. In an internet forum, the e-mail address is often used as identity property for people, while when

32 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

implementing an e-government application, one might use the passport ID to uniquely identify citizens (which nobody
would use in the web forum because its data is too sensitive).

In case the developer does not specify an identity property, the framework assigns a universally unique identifier
(UUID) to the object at creation time.

It is important to stress that identity properties need to be set at object creation time, i.e. inside the constructor of an
object, and are not allowed to change throughout the whole object lifetime. As we will see later, the object will be
referenced using its identity properties, and a change of an identity property would effectively wipe one object and
create a new one without updating dependent objects, leaving the system in an inconsistent state.

In a typical system, many domain objects will be entities. However, for some use-cases, another type is a lot better
suited: Value objects, which are explained in the next section.

Value Objects

PHP provides several value types which it supports internally: Integer, float, string, float and array. However, it is
often the case that you need more complex types of values inside your domain. These are being represented using
value objects.

The identity of a value object is defined by all its properties. Thus, two objects are equal if all properties are equal. For
instance, in a painting program, the concept of color needs to be somewhere implemented. A color is only represented
through its value, for instance using RGB notation. If two colors have the same RGB values, they are effectively
similar and do not need to be distinguished further.

Value objects do not only contain data, they can potentially contain very much logic, for example for converting the
color value to another color space like HSV or CMYK, even taking color profiles into account.

As all properties of a value object are part of its identity, they are not allowed to be changed after the object’s creation.
Thus, value objects are immutable. The only way to “change” a value object is to create a new one using the old one
as basis. For example, there might be a method mix on the Color object, which takes another Color object and
mixes both colors. Still, as the internal state is not allowed to change, the mix method will effectively return a new
Color object containing the mixed color values.

As value objects have a very straightforward semantic definition (similar to the simple data types in many programming
languages), they can easily be created, cloned or transferred to other subsystems or other computers. Furthermore, it
is clearly communicated that such objects are simple values.

Internally, frameworks can optimize the use of value objects by re-using them whenever possible, which can greatly
reduce the amount of memory needed for applications.

Entity or Value Object?

An object can not be ultimately categorized into either being an entity or a value object — it depends greatly on the use
case. An example illustrates this: For many applications which need to store an address, this address is clearly a value
object - all properties like street, number, or city contribute to the identity of the object, and the address is only used
as container for these properties.

However, if implementing an application for a postal service which should optimize letter delivery, not only the
address, but also the person delivering to this location should be stored. This name of the postman does not belong to
the identity of the object, and can change over time — a clear sign of Address being an entity in this case. So, generally
it often depends on the use-case whether an object is an entity or value object.

People new to Domain-Driven Design often tend to overuse entities, as this is what people coming from a relational
database background are used to.

2.1. Part l: Introduction and Fundamentals 33

Flow Framework, Release 7.0.x

So why not just use entities all the time? The design/architectural answer is: because a value object might just be
more fitting your problem at hand. The technical answer is: because value objects are immutable and therefore avoid
aliasing' problems, which are common cause of all kinds of bugs.

Associations

Now, after explaining the two types of domain objects, we will look at a particularly important implementation area:
Associations between objects.

Domain objects have relationships between them. In the domain language, these relations are expressed often as
follows: A consists of B, C has D, E processes F, G belongs to H. These relations are called associations in the
domain model.

In the real world, relationships are often inherently bidirectional, are only active for a certain time span, and can
contain further information. However, when modelling these relationships as associations, it is important to simplify
them as much as possible, encoding only the relevant information into the domain model.

Especially complex to implement are bidirectional many-to-many relations, as they can be traversed in both directions,
and consist of two lists of objects which have to be kept in sync manually in most programming languages (such as
Java or PHP).

Still, especially in the first iterations of refining the domain model, many-to-many relations are very common. The
following questions can help to simplify them:

* Is the association relevant for the core functionality of the application? If it is only used in rare use cases and
there is another way to receive the needed information, it is often better to drop the association altogether.

* For bidirectional associations, can they be converted to unidirectional associations, because there is a main
traversal direction? Traversing the other direction is still possible by querying the underlying persistence system.

» Can the association be qualified more restrictively, for example by adding multiplicities on each side?

The more simple the association is, the more directly it can be mapped to code, and the more clear the intent is.

Aggregates

When building a complex domain model, it will contain a lot of classes, all being on the same hierarchy level. However,
often it is the case that certain objects are parts of a bigger object. For example, when modeling a Car domain object
for a car repair shop, it might make sense to also model the wheels and the engine. As they are a part of the car, this
understanding should be also reflected in our model.

Such a part-whole relationship of closely related objects is called Aggregate. An aggregate contains a root, the so-
called Aggregate Root, which is responsible for the integrity of the child-objects. Furthermore, the whole aggregate
has only one identity visible to the outside: The identity of the aggregate root object. Thus, objects outside of the
aggregate are only allowed to persistently reference the aggregate root, and not one of the inner objects.

For the Car example this means that a ServiceStat ion object should not reference the engine directly, but instead
reference the Car through its external identity. If it still needs access to the engine, it can retrieve it through the Car
object.

These referencing rules effectively structure the domain model on a more fine-grained level, which reduces the com-
plexity of the application.

! https://en.wikipedia.org/wiki/Aliasing_(computing)

34 Chapter 2. The Definitive Guide

https://en.wikipedia.org/wiki/Aliasing_(computing

Flow Framework, Release 7.0.x

Life cycle of objects

Objects in the real world have a certain life cycle. A car is built, then it changes during its lifetime, and in the end it is
scrapped. In Domain-Driven Design, the life cycle of domain objects is very similar:

creation

modification active

deletion

Fig. 1: Simplified life cycle of objects

Because of performance reasons, it is not feasible to keep all objects in memory forever. Some kind of persistent
storage, like a database, is needed. Objects which are not needed at the current point in time should be persistently
stored, and only transformed into objects when needed. Thus, we need to expand the act ive state from Simplified
life cycle of objects to contain some more substates. These are shown below:

If an object is newly created, it is transient, so it is being deleted from memory at the end of the current request. If an
object is needed permanently across requests, it needs to be transformed to a persistent object. This is the responsibility
of Repositories, which allow to persistently store and retrieve domain objects.

So, if an object is added to a repository, this repository becomes responsible for saving the object. Furthermore, it is
also responsible for persisting further changes to the object throughout its lifetime, automatically updating the database
as needed.

For retrieving objects, repositories provide a query language. The repository automatically handles the database
retrieval, and makes sure that each entity is only once in memory.

Despite the object being created and retrieved multiple times during its lifecycle, it logically continues to exist, even
when it is stored in the database. It is only because of performance and safety reasons that is is not stored in main
memory, but in a database. Thus, Domain-Driven Design distinguishes creation of an object from reconstitution from
database: In the first case, the constructor is called, in the second case the constructor is not called as the object is only
converted from another representation form.

In order to remove a persistent object, it needs to be removed from the repository responsible for it, and then at the
end of the request, the object is transparently removed from the database.

For each aggregate, there is exactly one repository responsible which can be used to fetch the aggregate root object.

2.1. Part l: Introduction and Fundamentals 35

Flow Framework, Release 7.0.x

creation

active

modification deletion

> |— transient <_|

addedto removed from
repository repository

persistent
in memory

in the database

Fig. 2: The real life cycle of objects

How Flow enables Domain-Driven Design

Flow is a web development framework written in PHP, with Domain-Driven Design as its core principle. We will now
show in what areas Flow supports Domain-Driven Design.

First, the developer can directly focus on creating the domain model, using unit testing to implement the use-cases
needed. While he is creating the domain model, he can use plain PHP functionality, without caring about any particular
framework. The PHP domain model he creates just consists of plain PHP objects, with no base class or other magic
functionality involved. Thus, he can fully concentrate on domain modelling, without thinking about infrastructure yet.

This is a core principle of Flow: All parts of it strive for maximum focus and cleanness of the domain model, keeping
the developer focused on the correct implementation of it.

Furthermore, the developer can use source code annotations to attach metadata to classes, methods or properties. This
functionality can be used to mark objects as entity or value object, and to add validation rules to properties. In the
domain object below, a sample of such an annotated class is given. As PHP does not have a language construct for
annotations, this is emulated by Flow by parsing the source code comments.

In order to mark a domain object as aggregate root, only a repository has to be created for it, based on a certain
naming convention. Repositories are the easiest way to make domain objects persistent, and Flow provides a base
class containing generic £ indBy * methods. Furthermore, it supports a domain-specific language for building queries
which can be used for more complex queries, as shown in below in the AccountRepository.

Now, this is all the developer needs to do in order to persistently store domain objects. The database tables are created
automatically, and all objects get a UUID assigned (as we did not specify an identity property).

A simple domain object being marked as entity, and validation:

36 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

J ok k
* @Flow\Entity
*/

class Account {

J *k
* @var string
*/
protected S$firstName;

VE
* @var string
*/
protected $lastName;

J hk
* @var string
* @Flow\Validate (type="EmailAddress")
*/

protected Semail;

getters and setters as well as other functions

A simple repository:

class AccountRepository extends \Neos\Flow\Persistence\Repository {

// by extending from the base repository, there is automatically a
// findBy#* method available for every property, i.e. findByFirstName (
— "Sebastian")
// will return all accounts with the first name "Sebastian".
public function findByName (SfirstName, SlastName) {
Squery = Sthis->createQuery();

Squery->matching(

Squery—->logicalAnd (
Squery->equals ('firstName', S$firstName),
Squery->equals ('lastName', S$lastName)

)i

return Squery->execute();

From the infrastructure perspective, Flow is structured as MVC framework, with the model being the Domain-Driven
Design techniques. However, also in the controller and the view layer, the system has a strong support for domain
objects: It can transparently convert objects to simple types, which can then be sent to the client’s browser. It also
works the other way around: Simple types will be converted to objects whenever possible, so the developer can deal
with objects in an end-to-end fashion.

Furthermore, Flow has an Aspect-Oriented Programming framework at its core, which makes it easy to separate cross-
cutting concerns. There is a security framework in place (built upon AOP) where the developer can declaratively define
access rules for his domain objects, and these are enforced automatically, without any checks needed in the controller
or the model.

There are a lot more features to show, like rapid prototyping support, dependency injection, a signal-slots system and
a custom-built template engine, but all these should only aid the developer in focusing on the problem domain and
writing decoupled and extensible code.

2.1. Part l: Introduction and Fundamentals 37

Flow Framework, Release 7.0.x

2.2 Part ll: Getting Started

This tutorial gets you started with Flow. The most important concepts such as the MVC framework, object manage-
ment, persistence and templating are explained on the basis of a sample application.

2.2.1 Introduction

What'’s Flow

Flow is a PHP-based application framework. It is especially well-suited for enterprise-grade applications and explicitly
supports Domain-Driven Design, a powerful software design philosophy. Convention over configuration, Test-Driven
Development, Continuous Integration and an easy-to-read source code are other important principles we follow for
the development of Flow.

Needless to say, Flow provides you with a full-stack MVC framework for building state-of-the-art web applications.
More exciting though are the first class Dependency Injection support and the Aspect-Oriented Programming capabil-
ities which can be used without a single line of configuration.

What’s in this tutorial?

This tutorial explains all the steps to get you started with your very own first Flow project.

Please bring your own computer, a reasonable knowledge of PHP and HTML and at least some initial experience with
object-oriented programming. In return you’ll surely get some new insights into modern programming paradigms and
how to produce clean code in no time.

Note: If you’re stuck at some point or stumble over some weirdnesses during the tutorial, please let us know! We
appreciate any feedback in our forum, as a ticket in our issue tracker or via Slack.

Tip: This tutorial goes best with a Caffe Latte or, if it’s afternoon or late night already, with a few shots of Espresso

2.2.2 Requirements

Flow is being developed and tested on multiple platforms and pretty easy to set up. Nevertheless we recommend that
you go through the following list before installing Flow, because a server with exotic php.ini settings or wrong file
permissions can easily spoil your day.

38 Chapter 2. The Definitive Guide

https://discuss.neos.io/
https://github.com/neos/flow-development-collection/issues
http://slack.neos.io/

Flow Framework, Release 7.0.x

Server Environment

Not surprisingly, you’ll need a web server for running your Flow-based web application. We recommend Apache
(though nginx, IIS and others work too — we just haven’t really tested them). Please make sure that the mod_rewrite
module is enabled.

Tip: To enable Flow to create symlinks on Windows Server 2008 and higher you need to do some extra configura-
tion. In IIS you need to configure Authentication for your site configuration to use a specific user in the Anonymous
Authentication setting. The configured user should also be allowed to create symlinks using the local security policy
Local Policies > User Rights Assignments > Create symbolic links

Flow’s persistence mechanism requires a database supported by Doctrine DBAL. Make sure to use at least 10.2.2 for
MariaDB, and 5.7.7 when using MySQL.

PHP

Flow was one of the first PHP projects taking advantage of namespaces and other features introduced in PHP version
5.3. By now we started using features of PHP 7.3, so make sure you have PHP 7.3.0 or later available on your web
server. Make sure your PHP CLI binary is the same version!

The default settings and extensions of the PHP distribution should work fine with Flow but it doesn’t hurt checking if
the PHP modules mbstring, tokenizer and pdo_mysqgl are enabled, especially if you compiled PHP yourself.

Note: Make sure the PHP functions exec (), shell_exec(), escapeshellcmd() and
escapeshellarg () are not disabled in you PHP installation. They are required for the system to run.

The development context might need more than the default amount of memory. At least during development you
should raise the memory limit to about 250 MB in your php.ini file.

In case you get a fatal error message saying something like Maximum function nesting level of '100'
reached, aborting!, check your php.ini file for settings regarding Xdebug and modify/add a line xdebug.
max_nesting_level = 500 (suggested value).

2.2.3 Installation

Flow Download

Flow uses Composer for dependency management, which is a separate command line tool. Install it by following the
installation instructions which boil down to this in the simplest case:

curl -s https://getcomposer.org/installer | php

Note: Feel free to install the composer command to a global location, by moving the phar archive to e.g.
/ust/local/bin/composer and making it executable. The following documentation assumes composer is installed
globally.

Then use Composer in a directory which will be accessible by your web server to download and install all packages
of the Flow Base Distribution. The following command will clone the latest stable version, include development
dependencies and keep git metadata for future use:

2.2. Part ll: Getting Started 39

http://httpd.apache.org/docs/current/mod/mod_rewrite.html
http://www.doctrine-project.org/projects/dbal.html
https://getcomposer.org
https://getcomposer.org/download/
https://getcomposer.org

Flow Framework, Release 7.0.x

composer create-project —-keep-vcs neos/flow-base-distribution tutorial

This will install the latest stable version of Neos. In order to install a specific version, type:

composer create-project —-keep-vcs neos/flow-base-distribution <target-directory>
—<version>

And replace <target-directory> with the folder name to create the project in and <version> with the specific version
to install, for example /.2. See [Composer documentation](https://getcomposer.org/doc/03-cli.md#create-project) for
further details.

Note: Throughout this tutorial we assume that you installed the Flow distribution in /var/apache2/htdocs/tutorial
and that /var/apache2/htdocs is the document root of your web server. On a Windows machine you might use
c:\vxampp\htdocs instead.

To update all dependencies, run this from the top-level folder of the distribution:

composer update

Directory Structure

Let’s take a look at the directory structure of a Flow application:

Directory Description

Configuration/ Application specific configuration, grouped by contexts

Data/ Persistent and temporary data, including caches, logs, resources and the database
Packages/ Contains sub directories which in turn contain package directories

Packages/Framework/ | Packages which are part of the official Flow distribution
Packages/Application/ | Application specific packages

Packages/Libraries/ 3rd party libraries

Web/ Public web root

A Flow application usually consists of the above directories. As you see, most of them contain data which is spe-
cific to your application, therefore upgrading the Flow distribution is a matter of updating Packages/Framework/ and
Packages/Libraries/ when a new release is available.

Flow is a package based system which means that all code, documentation and other resources are bundled in packages.
Each package has its own directory with a defined sub structure. Your own PHP code and resources will usually end
up in a package residing below Packages/Application/.

Basic Settings

In order to be able to run and serve out pages, Flow requires very few configurations. Flow uses so called
YAML files for all it’s configuration. If you don’t know that yet, just take a look at the example, it is really
easy to understand! For starters, you should begin by renaming the file Configuration/Settings.yaml.
example to Configuration/Settings.yaml. This will be referenced elsewhere as the global settings file,
because it lives in the installation directory, instead of a single package. It only contains the most basic configu-
ration for a mysql database running on the same machine and a setting to enable the default Flow [routes](https:
/len.wikipedia.org/wiki/Web_framework#URL_mapping), which you need to see the “Welcome” page later.

40 Chapter 2. The Definitive Guide

https://getcomposer.org/doc/03-cli.md#create-project
https://en.wikipedia.org/wiki/Web_framework#URL_mapping
https://en.wikipedia.org/wiki/Web_framework#URL_mapping

Flow Framework, Release 7.0.x

Neos:
Flow:
persistence:
backendOptions:
driver: 'pdo_mysgl' # use pdo_pgsql for PostgreSQL
charset: 'utf8mb4’' # change to utf8 when using PostgreSQOL
host: '127.0.0.1" # adjust to your database host
mvce:
routes:
'Neos.Flow': true

Also, if you are trying this on Windows by chance, you need to uncomment the lines about the
phpBinaryPathAndFilename and adjust the path to the php . exe. If you installed e.g. XAMPP, this should be
C:\path\to\xampp\php\php.exe.

Other, more specific options should mostly only go directly into package specific Settings.yaml files. You will
learn about those later.

File Permissions

Most of the directories and files must be readable and writable for the user you’re running Flow with. This user will
usually be the same one running your web server (httpd, www, _www or www—data on most Unix based systems).
However it can and usually will happen that Flow is launched from the command line by a different user. Therefore
it is important that both, the web server user and the command line user are members of a common group and the file
permissions are set accordingly.

We recommend setting ownership of directories and files to the web server’s group. All users who also need to launch
Flow must also be added this group. But don’t worry, this is simply done by changing to the Flow base directory and
calling the following command (this command must be called as super user):

sudo ./flow core:setfilepermissions john www-data www-data

Note:

Setting file permissions is not necessary and not possible on Windows machines. For Apache to be able
to create symlinks, you need to use Windows Vista (or newer) and Apache needs to be started with
Administrator privileges. Alternatively

you can run the command flow flow:cache:warmup once from an Administrator elevated command line inside
your installation folder. You then also need to repeat this step, whenever you install new packages.

Now that the file permissions are set, all users who plan using Flow from the command line need to join the web
server’s group. On a Linux machine this can be done by typing:

’sudo usermod —-a -G www-data john

On a Mac you can add a user to the web group with the following command:

’sudo dscl . —-append /Groups/_www GroupMembership johndoe

You will have to exit your shell / terminal window and open it again for the new group membership to take effect.

Note: In this example the web user was _www and the web group is called _www as well (that’s the case on a Mac

2.2. Part ll: Getting Started 41

Flow Framework, Release 7.0.x

using MacPorts). On your system the user or group might be www—data, httpd or the like - make sure to find out
and specify the correct user and group for your environment.

Web Server Configuration

As you have seen previously, Flow uses a directory called Web as the public web root. We highly recommend that you
create a virtual host which points to this directory and thereby assure that all other directories are not accessible from
the web. For testing purposes on your local machine it is okay (but not very convenient) to do without a virtual host,
but don’t try that on a public server!

Configure AllowOverride and MultiViews

Because Flow provides an . htaccess file with mod_rewrite rules in it, you need to make sure that the directory
grants the neccessary rights:

httpd.conf:

<Directory /var/apache2/htdocs/tutorial/>
AllowOverride FileInfo Options=MultiViews
</Directory>

The way Flow addresses resources on the web makes it incompatible with the Mult iViews feature of Apache. This
needs to be turned off, the default . ht access file distributed with Flow contains this code already

<IfModule mod_negotiation.c>

prevents Apache's automatic file negotiation, it breaks resource URLs
Options -MultiViews

</IfModule>

Configure server-side scripts

Important: Disallow execution of server-side scripts below Web/_Resources. If users can upload (PHP) scripts they
can otherwise be executed on the server. This should almost never be allowed, so make sure to disable PHP (or other
script handlers) for anything below Web/_Resources.

The .htaccess file placed into the Web/_Resources folder does this for Apache when .Ataccess is evaluated. Another
way is to use this in the configuration:

<Directory /var/apache2/htdocs/tutorial/Web/_Resources>
AllowOverride None
SetHandler default-handler
php_flag engine off

</Directory>

For nginx and other servers use similar configuration.

42 Chapter 2. The Definitive Guide

https://www.macports.org/

Flow Framework, Release 7.0.x

Configure a Context

As you’ll learn soon, Flow can be launched in different contexts, the most popular being Production,
Development and Testing. Although there are various ways to choose the current context, the most convenient
is to setup a dedicated virtual host defining an environment variable.

Setting Up a Virtual Host for Context «Development»

Assuming that you chose Apache 2 as your web server, simply create a new virtual host by adding the following
directions to your Apache configuration (conf/extra/httpd-vhosts.conf on many systems; make sure it is
actually loaded with Include in httpd.conf):

httpd.conf:

<VirtualHost «:80>
DocumentRoot /var/apache2/htdocs/tutorial/Web/
ServerName dev.tutorial.local

</VirtualHost>

This virtual host will later be accessible via the URL http://dev.tutorial.local.

Note: Flow runs per default in the Development context. That’s why the ServerName in this example is
dev.tutorial.local.

Setting Up a Virtual Host for Context «Production»

httpd.conf:

<VirtualHost «:80>
DocumentRoot /var/apache2/htdocs/tutorial/Web/
ServerName tutorial.local
SetEnv FLOW_CONTEXT Production

</VirtualHost>

You’ll be able to access the same application running in Product ion context by accessing the URL http://tutorial.
local. What’s left is telling your operating system that the invented domain names can be found on your local machine.
Add the following line to your /etc/hosts file (C:windowssystem32driversetchosts on Windows):

hosts:

127.0.0.1 tutorial.local dev.tutorial.local

2.2. Part ll: Getting Started 43

http://dev.tutorial.local
http://tutorial.local
http://tutorial.local

Flow Framework, Release 7.0.x

Change Context to «Production» without Virtual Host

If you decided to skip setting up virtual hosts earlier on, you can enable the Production context by editing the
.htaccess file in the Web directory and remove the comment sign in front of the SetEnv line:

.htaccess:

You can specify a default context by activating this option:
SetEnv FLOW_CONTEXT Production

Note: The concept of contexts and their benefits is explained in the next chapter «Configuration».

Welcome to Flow

Restart Apache and test your new configuration by accessing http://dev.tutorial.local in a web browser. You should be
greeted by Flow’s welcome screen:

Getting Started

Here's how to get into the flow: Join the community

Contribute to Flow and Neos

Kickstart your first package

Go to svar/apacheZ/htdocs/tutorials/Webs

and run

./flow kickstart:package MyCompany.MyPackage
to create a package with a standard controller

Test your controller

“MyCompany.MyPackage” has either not yet been created or not activated.
Follow step 1 and reload this page.

If you named your package "SomethingElse” visit
http://tutorial.local/ SomethingElse/

Read the tutorial

Switch over to the Quickstart Tutorial to get the a first overview.

Deactivate the Welcome package (optional)

Deactivate the Welcome package with
./flow package:deactivate Neos.Welcome

Afterwards make sure to remove the "Welcome” SubRoute definition from the

global routes in Configuration/Routes.yaml.

Fig. 3: The Flow Welcome screen

Read the documentation
Documentation

Flow API

Coding guidelines

Known issues

Get involved

Start a thread in our forum
Join us on Slack

Report a bug

Chapter 2. The Definitive Guide

http://dev.tutorial.local

Flow Framework, Release 7.0.x

Tip: If you get in trouble during the installation ask for help at discuss.neos.io.

2.2.4 Configuration

Contexts

Once you start developing an application you’ll want to launch it in different contexts: in a production context the
configuration must be optimized for speed and security while in a development context debugging capabilities and
convenience are more important. Flow supports the notion of contexts which allow for bundling configuration for
different purposes. Each Flow request acts in exactly one context. However, it is possible to use the same installation
on the same server in distinct contexts by accessing it through a different host name, port or passing special arguments.

Why do I want contexts?

Imagine your application is running on a live server and your customer reports a bug. No matter how hard you try, you
can’t reproduce the issue on your local development server. Now contexts allow you to enter the live application on the
production server in a development context without anyone noticing — both contexts run in parallel. This effectively
allows you to debug an application in its realistic environment (although you still should do the actual development on
a dedicated machine .. .).

An additional use for context is the simplified staging of your application. You’ll want almost the same configuration
on your production and your development server - but not exactly the same. The live environment will surely access
a different database or might require other authentication methods. What you do in this case is sharing most of the
configuration and define the difference in dedicated contexts.

Flow provides configuration for the Production and Development context. In the standard distribution a reasonable
configuration is defined for each context:

* In the Production context all caches are enabled, logging is reduced to a minimum and only generic, friendly
error messages are displayed to the user (more detailed descriptions end up in the log).

* In Development context caches are active but a smart monitoring service flushes caches automatically if PHP
code or configuration has been altered. Error messages and exceptions are displayed verbosely and additional
aids are given for effective development.

Tip: If Flow throws some strange errors at you after you made code changes, make sure to either manually
flush the cache or run the application in Development context - because caches are not flushed automatically in
Production context.

The configuration for each context is located in directories of the same name:

Context Configurations

Directory Description

Configuration/ Global configuration, for all contexts
Configuration/Development/ | Configuration for the Development context
Configuration/Production/ Configuration for the Production context

Note: Setting Up Context with Virtual Host and change Context from «Development» to «Production» is explained

2.2. Part ll: Getting Started 45

https://discuss.neos.io/

Flow Framework, Release 7.0.x

in the previous chapter «Installation».

One thing you certainly need to adjust is the database configuration. Aside from that Flow should work fine with
the default configuration delivered with the distribution. However, there are many switches you can adjust: specify
another location for logging, select a faster cache backend and much more.

The easiest way to find out which options are available is taking a look at the default configuration of the Flow
package and other packages. The respective files are located in Packages/Framework/<packageKey>/
Configuration/. Don’t modify these files directly but rather copy the setting you’d like to change and insert
it into a file within the global or context configuration directories.

Flow uses the YAML format' for its configuration files. If you never edited a YAML file, there are two things you
should know at least:

* Indentation has a meaning: by different levels of indentation, a structure is defined.
* Spaces, not tabs: you must indent with exactly 2 spaces per level, don’t use tabs.

More detailed information about Flow’s configuration management can be found in the Reference Manual.

Note: If you’re running Flow on a Windows machine, you do have to make some adjustments to the standard
configuration because it will cause problems with long paths and filenames. By default Flow caches files within the
Data/Temporary/<Context>/Caches/ directory whose absolute path can eventually become too long for
Windows.

To avoid errors you should change the cache configuration so it points to a location with a very short absolute file
path, for example C:\\tmp\\. Do that by setting the FLOW_PATH_TEMPORARY_BASE environment variable -
For example in the virtual host part of your Apache configuration:

httpd.conf:
<VirtualHost ...>

SetEnv FLOW_PATH_TEMPORARY_BASE "C\\:tmp\\"
</VirtualHost>

Important: Parsing the YAML configuration files takes a bit of time which remarkably slows down the initialization
of Flow. That’s why all configuration is cached by default when Flow is running in Production context. Because this
cache cannot be cleared automatically it is important to know that changes to any configuration file won’t have any
effect until you manually flush the respective caches.

To avoid any hassle we recommend that you stay in Development context throughout this tutorial.

Database Setup

Before you can store anything, you need to set up a database and tell Flow how to access it. The credentials and driver
options need to be specified in the global Flow settings.

Tip: You should make it a habit to specify database settings in context-specific configuration files. This makes sure
your functional tests will never accidentally truncate your production database. The same line of thought makes sense
for other options as well, e.g. mail server settings.

! YAML Ain’t Markup Language http://yaml.org

46 Chapter 2. The Definitive Guide

http://flowframework.readthedocs.org/en/stable/
http://yaml.org

Flow Framework, Release 7.0.x

After you have created an empty database and set up a user with sufficient access rights, copy the
file Configuration/Development/Settings.yaml.example to Configuration/Development/
Settings.yaml. Open and adjust the file to your needs - for a common MySQL setup, it would look similar to
this:

Configuration/Development/Settings.yaml.:

Neos:
Flow:
persistence:
backendOptions:
dbname: 'gettingstarted'
user: 'myuser'
password: 'mypassword'’

For global settings and Production context, the relevant files would be directly in Configuration respectively
Configuration/Production’.’

Tip: Configure your MySQL server to use the ut £8_unicode_ci collation by default if possible!

If you configured everything correctly, the following command will create the initial table structure needed by Flow:

$./flow doctrine:migrate
Migrating up to 201lxxxxxxxxxx from 0

++ migrating 20110613223837
—-> CREATE TABLE flow_resource_resourcepointer (hash VARCHAR(255) NOT NULL,
—~PRIMARY

—-> CREATE TABLE flow_resource_resource (persistence_object_identifier
—VARCHAR (40)

++ finished in 4.97
++ 5 migrations executed
++ 28 sgl queries

Note: If you run into problems with the migrations, e.g. because the database does not allow dropping primary keys,
there is another method to setup the database newly:

/flow doctrine:create && ./flow doctrine:migrationversion —add —version all

This should only be used for initial creation of the database, as it is a destructive operation though! Also note that this
will not solve the issue for future migrations.

2.2. Part ll: Getting Started 47

Flow Framework, Release 7.0.x

Environment Variables

Some specific flow behaviour can also be configured with a couple of environment variables.

Variable | Description

FLOW_ROOTPATH | Can be used to override the path to the Flow root

FLOW_CONTEXT Use to set the flow context (see above)

FLOW_PATH_TEMPORARY_|BESitbe used to set a path for temporary data

FLOW_LOCK_HOLDING_PAGHse to specify the html page shown when the site is locked. This is relative to the
Packages directory. Can be given as FLOW_LOCKHOLDINGPAGE, too.
FLOW_ONLY_COMPOSER_TOS&tHR false (0) to use the custom ClassLoader on top of the regular mechanism
provided by composer (deprecated)

2.2.5 Modeling

Before we kickstart our first application, let’s have a quick look in what Flow differs from other frameworks.

We claim that Flow lets you concentrate on the essential and in fact this is one major design goal we followed in the
making of Flow. There are many factors which can distract developers from their principal task to create an application
solving real-world problems. Most of them are infrastructure- related and reappear in almost every project: security,
database, validation, persistence, logging, visualization and much more. Flow preaches legible code, well-proven
design patterns, true object orientation and provides first class support for Domain-Driven Design. And it takes care
of most of the cross-cutting concerns, separating them from the business logic of the application.'?

Domain-Driven Design

Every software aims to solve problems within its subject area — its domain — for its users. All the product’s other
functions are just padding which serves to further this aim. If the domain of your software is the booking of hotel
rooms, the reservation and cancellation of rooms are two of your main tasks. However, the presentation of booking
forms or the logging of security-relevant occurrences do not belong to the domain ‘hotel room bookings’ and primarily
serve to support the main task.

Most of the time it is easy to check whether a function belongs to a domain: imagine that you are booking a room
from a receptionist. He is capable of accomplishing the task and will readily meet your request. Now imagine how
this employee would react if you asked him to render a booking form or to cache requests. These tasks fall outside his
domain. Only in the rarest cases this is the domain of an application ‘software’. Rather most programs offer solutions
for real life processes.

To master the complexity of your application it is therefore essential to neatly separate areas which concern the domain
from the code and which merely serves the infrastructure. For this you will need a layered architecture — an approach
that has worked for decades. Even if you have not previously divided code into layers consciously, the mantra ‘model
view controller’ should fall easily from your lips® . For the model, which is part of this MVC pattern, is at best a model
of part of a domain. As a domain model it is separated from the other applications and resides in its own layer, the
domain layer.

Tip: Of course there is much more to say about Domain-Driven Design which doesn’t belong in this tutorial. A good
starter is the section about DDD in the Flow documentation.

! http:/en.wikipedia.org/wiki/Domain-driven_design

2 Note that we don’t use these techniques for academic reasons. Personally I have never attended a lecture about software design — I just love
clean code due to the advantages I discovered in my real- world projects.

3 If it doesn’t, we recommend reading our introductory sections about MVC in the Flow reference.

48 Chapter 2. The Definitive Guide

http://en.wikipedia.org/wiki/Domain-driven_design

Flow Framework, Release 7.0.x

Domain Model

Our first Flow application will be a blog system. Not because programming blogs is particularly fancy but because
you will a) feel instantly at home with the domain and b) it is comparable with tutorials you might know from other
frameworks.

So, what does our model look like? Our blog has a number of posts, written by a certain author, with a title, publishing
date and the actual post content. Each post can be tagged with an arbitrary number of tags. Finally, visitors of the blog
may comment blog posts.

A first sketch shows which domain models (classes) we will need:

Fig. 4: A simple model

Let’s add some properties to each of the models:

To be honest, the above model is not the best example of a rich Domain Model, compared to Active Records which
usually contain not only properties but also methods.* For simplicity we also defined properties like author as
simple strings — you’d rather plan in a dedicated Author object in a real-world model.

4 see http://en.wikipedia.org/wiki/Active_record_pattern

2.2. Part ll: Getting Started 49

http://en.wikipedia.org/wiki/Active_record_pattern

Flow Framework, Release 7.0.x

Blos

titler stming

pasts oPast>

desoription: string

Past
bisy: Blos
titier string
date DateTiue
authar: siring
contenk shring
L LIS -ﬂiihﬂﬂf?
tass <T as>

statog nlEser

(omment

dote: DoteTime
authars Sirind

eril Addolre 55 string
contenlts $tring

Fig. 5: Domain Model with properties

50

Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Repositories

Now that you have the models (conceptually) in place, you need to think about how you will access them. One
thing you’ll do is implementing a getter and setter method for each property you want to be accessible from the
outside. You’ll end up with a lot of methods like getTitle, setAuthor, addComment and the like® . Posts
(i.e. Post objects) are stored in a B1og object in an array or better in an Doctrine/Common/Collections/
Collection® instance. For retrieving all posts from a given Blog all you need to do is calling the getPosts
method of the Blog in question:

&

Sposts = $blog->getPosts();

Executing get Comment s on the Post would return all related comments:

Scomments = S$post->getComments () ;

In the same manner get Tags returns all tags attached to a given Post. But how do you retrieve the active Blog object?

All objects which can’t be found by another object need to be stored in a repository. In Flow each repository is
responsible for exactly one kind of an object (i.e. one class). Let’s look at the relation between the BlogRepository
and the Blog:

i 1
 Bios Repository Bl
tebler slring
blass <Ping> desgription siring
pasts: oPasts

aclol{Bins $hiss)
rqu»’-nfﬂ.lu .Fhu'-l;]'
-F'-'nnﬂ.-':!.:!-'vr.{:l

{ A

Fig. 6: Blog Repository and Blog

As you see, the BlogRepository provides methods for adding, removing and finding blogs. In our example
application only one blog at a time is supported so all we need is a function to find the active blog — even though the
repository can contain more than one blog.

Now, what if you want to display a list of the 5 latest posts, no matter what blog they belong to? One option would
be to find all blogs, iterate over their posts and inspect each date property to create a list of the 5 most recent posts.
Sounds slow? It is.

A much better way to find objects by a given criteria is querying a competent repository. Therefore, if you want to
display a list of the 5 latest posts, you better create a dedicated PostRepository which provides a specialized
findRecentByBlog method:

I silently added the findPrevious and findNext methods because you will later need them for navigating
between posts.

5 Of course we considered magic getters and setters. But then, how do you restrict read or write access to single properties? Furthermore, magic
methods are notably slower and you loose the benefit of your IDE’s autocompletion feature. Fortunately IDEs like Netbeans or Zend Studio provide
functions to create getters and setters automatically.

6 see http://docs.doctrine- project.org/projects/doctrine- orm/en/latest/reference/association-mapping.html#collections

2.2. Part ll: Getting Started 51

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html#collections

Flow Framework, Release 7.0.x

p

hisg s <Plos>

astol{Blas fbles!
rmﬁ-ﬂ{ﬂ.l’l; .Fhlr_i,]
f-‘ﬂd-r‘f.:i-‘!-’l.ﬂ
f:ﬂd-r‘hlf!

paste ofast>

add(Past fpast)
remove{Past fpasi)
Limd A

{inch By Blos(Bles §bies)
{inck est{filog fhiss)
{incPreviovsBles $bias)

| PestRepusiony

{inPecent By Rioa{fbis, flinat ¢ 5)

Bles

titler firing
desoription string
posts Pasts

Fig. 7: A dedicated Post Repository

Past
bisy Bles
titlg: string
date: DoteTime
authar String

contenl Steing
comments: < grments
toas <T ag>

status inteser

52

Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Aggregates

With the Post Repository you’re now able to find posts independently from the Blog. There’s no strict rule for when a
model requires its own repository. If you want to display comments independently from their posts and blogs, you’d

surely need a Comment Repository, too. In this sample application you can do without it and find the comments you
need by calling a getter method on the Post.

All objects which can only be found through a foreign repository, form an Aggregate. The object having its own
repository (in this case Post) becomes the Aggregate Root:

blags: <Plag>

title: siring
desgription: string
pasts Past>

astel] Blag fing)
resuve(Bios fblas)
Iy a‘uﬂ:t.‘w.c)

Lind Al

Bigsy: pies

title! steing
date: DoteTime
pasts: <Pasts guther: string
cantent: glring
adal(Past fpast] comments: <lamments
remeve(Past fpast) tags Tag>

Linddi)

LindByBios(Bios folas)
{" H npl{di‘jl{pnn‘! S)

status infeser

eraildddress: steing
WMI shring

Fig. 8: The Post Aggregate

The concept of aggregates simplifies the overall model because all objects of an aggregate can be seen as a whole: on

deleting a post, the framework also deletes all associated comments and tags because it knows that no direct references
from outside the aggregate boundary may exist.

Something to keep in mind is the opposite behavior the framework applies, when a repository for an object exists:

any changes to it must be registered with that repository, as any persistence cascading of changes stops at aggregate
boundaries.

Enough for the modeling part. You’ll surely want some more classes later but first let’s get our hands dirty and start
with the actual implementation!

2.2. Part ll: Getting Started 53

Flow Framework, Release 7.0.x

2.2.6 Kickstart

Flow makes it easy to start with a new application. The Kickstarter package provides template based scaffolding
for generating an initial layout of packages, controllers, models and views.

Note: At the time of this writing these functions are only available through Flow’s command line interface. This
might change in the future as a graphical interface to the kickstarter is developed.

Command Line Tool

The script flow resides in the main directory of the Flow distribution. From a shell you should be able to run the script
by entering . /f1low:

./flow
Flow 3.0.0 ("Development" context)
usage: ./flow <command identifier>

See './flow help' for a list of all available commands.

To get an overview of all available commands, enter . /f1low help:

./flow help
Flow 3.0.0 ("Development" context)
usage: ./flow <command identifier>

The following commands are currently available:

PACKAGE "NEOS.FLOW":

« flow:cache:flush Flush all caches
cache:warmup Warm up caches
configuration:show Show the active configuration
settings
configuration:listtypes List registered configuration types
configuration:validate Validate the given configuration
configuration:generateschema Generate a schema for the given

configuration or YAML file.

« flow:core:setfilepermissions Adjust file permissions for CLI and
web server access
* flow:core:migrate Migrate source files as needed
flow:core:shell Run the interactive Shell
database:setcharset Convert the database schema to use

the given character set and
collation (defaults to utf8mb4 and
utf8mb4_unicode_ci) .

doctrine:validate Validate the class/table mappings

doctrine:create Create the database schema

doctrine:update Update the database schema

doctrine:entitystatus Show the current status of entities
and mappings

doctrine:dqgl Run arbitrary DQL and display

(continues on next page)

54 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

doctrine:migrationstatus
doctrine:migrate
doctrine:migrationexecute
doctrine:migrationversion
doctrine:migrationgenerate

help
package:create
package:delete
package:activate
package:deactivate
package:list
package: freeze
package:unfreeze

package:refreeze

resource:publish
resource:clean

routing:list

security:importpublickey
security:importprivatekey
security:showeffectivepolicy

security:showunprotectedactions

security:showmethodsforprivilegetarget

server:run

typeconverter:list

PACKAGE "NEOS.KICKSTARTER":

kickstart:package
kickstart:actioncontroller
kickstart:commandcontroller
kickstart:model
kickstart:repository

* = compile time command

See './flow help <commandidentifier>'

results

Show the current migration status
Migrate the database schema

Execute a single migration
Mark/unmark a migration as migrated
Generate a new migration

Display help for a command

Create a new package

Delete an existing package
Activate an available package
Deactivate a package

List available packages
Freeze a package

Unfreeze a package

Refreeze a package

Publish resources
Clean up resource registry

List the known routes

Import a public key

Import a private key

Shows a list of all defined
privilege targets and the effective
permissions for the given groups.
Lists all public controller actions
not covered by the active security
policy

Shows the methods represented by the
given security privilege target

Run a standalone development server

Lists all currently active and
registered type converters

Kickstart a new package

Kickstart a new action controller
Kickstart a new command controller
Kickstart a new domain model
Kickstart a new domain repository

for more information about a specific command.

Depending on your Flow version you’ll see more or less the above available commands listed.

2.2. Part ll: Getting Started

55

Flow Framework, Release 7.0.x

Kickstart the package

Let’s create a new package Blog inside the Vendor namespace Acme!':

./flow kickstart:package Acme.Blog

The kickstarter will create three files:

Created .../Acme.Blog/Classes/Controller/StandardController.php
Created .../Acme.Blog/Resources/Private/Layouts/Default.html
Created .../Acme.Blog/Resources/Private/Templates/Standard/Index.html

and the directory Packages/Application/Acme.Blog/ should now contain the skeleton of the future B1og package:

cd Packages/Application/
find Acme.Blog

Acme.Blog

Acme.Blog/Classes

Acme.Blog/Classes/Controller
Acme.Blog/Classes/Controller/StandardController.php
Acme.Blog/composer. json

Acme.Blog/Configuration

Acme.Blog/Documentation

Acme.Blog/Meta

Acme.Blog/Resources

Acme.Blog/Resources/Private
Acme.Blog/Resources/Private/Layouts
Acme.Blog/Resources/Private/Layouts/Default.html
Acme.Blog/Resources/Private/Templates
Acme.Blog/Resources/Private/Templates/Standard
Acme.Blog/Resources/Private/Templates/Standard/Index.html
Acme.Blog/Tests

Acme.Blog/Tests/Functional

Acme.Blog/Tests/Unit

Switch to your web browser and check at http://dev.tutorial.local/acme.blog if the generated controller produces some
output:

Tip: If you get an error at this point, like a “404 Not Found” this could be caused by outdated cache entries. Because
Flow should be running in Development context at this point, it is supposed to detect changes to code and resource
files, but this seems to sometimes fail... Before you go crazy looking for an error on your side, try reloading the
page and if that doesn’t work you can clear the cache manually by executing the . /flow flow:cache:flush
—-—force command.

!' A “vendor namespace” is used to avoid conflicts with other packages. It is common to use the name of the company/organization as namespace.
See Part I1] - Package Management for some more information on package keys.

56 Chapter 2. The Definitive Guide

http://dev.tutorial.local/acme.blog

Flow Framework, Release 7.0.x

B O L L O T O RO e D

A freshly created Fluid template!

Some data set by the controller:

« bar
+ baz

Fig. 9: A freshly created Fluid template

Kickstart Controllers

If you look at the drawing of our overall model you’ll notice that you need controllers for the most important domain
model, being Post. For the PostController we know that we’ll need some standard actions, so let’s have them
created as well:

./flow kickstart:actioncontroller --generate-actions —--generate-related Acme.Blog Post

resulting in:

Created .../Acme.Blog/Classes/Domain/Model/Post.php

Created .../Acme.Blog/Tests/Unit/Domain/Model/PostTest.php

Created .../Acme.Blog/Classes/Domain/Repository/PostRepository.php
Created .../Acme.Blog/Classes/Controller/PostController.php
Omitted .../Acme.Blog/Resources/Private/Layouts/Default.html
Created .../Acme.Blog/Resources/Private/Templates/Post/Index.html
Created .../Acme.Blog/Resources/Private/Templates/Post/New.html
Created .../Acme.Blog/Resources/Private/Templates/Post/Edit.html
Created .../Acme.Blog/Resources/Private/Templates/Post/Show.html

As new models were generated, don't forget to update the database schema with the
—respective doctrine:x commands.

Tip: To see a full description of the kickstart commands and its options, you can display more details with . /f1low
help kickstart::actioncontroller.

Once complete (in the Controller chapter), this new controller will be accessible via http://dev.tutorial.local/acme.blog/
post

Please delete the file StandardController.php and its corresponding template directory as you won’t need

2.2. Part ll: Getting Started 57

http://dev.tutorial.local/acme.blog/post
http://dev.tutorial.local/acme.blog/post

Flow Framework, Release 7.0.x

them for our sample application”.

Kickstart Models and Repositories

The kickstarter can also generate models and repositories, as you have seen above when using the
-—generate-related option while kickstarting the Post Controller. Of course that can also be done specif-
ically with the kickstart :model command.

Before we do this, you should have a look at the next section on models and repositories.

2.2.7 Model and Repository

Usually this would now be the time to write a database schema which contains table definitions and lays out relations
between the different tables. But Flow doesn’t deal with tables. You won’t even access a database manually nor will
you write SQL. The very best is if you completely forget about tables and databases and think only in terms of objects.

Tip: Code Examples

To see the full-scale code of the Blog as used by some of us, take a look at the Blog example package in our Git
repository.

Domain models are really the heart of your application and therefore it is vital that this layer stays clean and legible.
In a Flow application a model is just a plain old PHP object'. There’s no need to write a schema definition, subclass a
special base model or implement a required interface. All Flow requires from you as a specification for a model is a
proper documented PHP class containing properties.

All your domain models need a place to live. The directory structure and filenames follow the conventions of our Cod-
ing Guidelines which basically means that the directories reflect the classes’ namespace while the filename is identical
to the class name. The base directory for the domain models is Classes/<VendorName>/<PackageName>/
Domain/Model/.

Blog Model

The code for your B1og model can be kickstarted like this:

./flow kickstart:model Acme.Blog Blog title:string \
description:string 'posts:\Doctrine\Common\Collections\Collection'

That command will output the created file and a hint:

Created .../Acme.Blog/Classes/Acme/Blog/Domain/Model/Blog.php

Created .../Acme.Blog/Tests/Unit/Domain/Model/BlogTest .php

As a new model was generated, don't forget to update the database schema with the
—respective doctrine:* commands.

Now let’s open the generated Blog . php file and adjust it slightly:
* Add basic validation rules, see Part III - Validation for background information
¢ Add extended meta data for the ORM, see Part Il - Persistence

* Replace the setPosts () setter by dedicated methods to add/remove single posts

2 If you know you won’t be using the StandardController, you can create a completely empty package with the package : create command.
I ' We love to call them POPOs, similar to POJOs http://en.wikipedia.org/wiki/Plain_Old_Java_Object

58 Chapter 2. The Definitive Guide

https://github.com/neos/Acme.Blog
http://en.wikipedia.org/wiki/Plain_Old_Java_Object

Flow Framework, Release 7.0.x

The resulting code should look like this:
Classes/Acme/Blog/Domain/Model/Blog.php:

<?php
namespace Acme\Blog\Domain\Model;

/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;

use Neos\Flow\Annotations as Flow;

use Doctrine\ORM\Mapping as ORM;

J ok k
* A blog that contains a list of posts

*
* @Flow\Entity
*/

class Blog {

J x*
* @Flow\Validate (type="NotEmpty")
* @Flow\Validate (type="StringLength", options={ "minimum"=3, "maximum"=80 })
* @ORM\Column (length=80)
* @var string
*/
protected Stitle;

J *k
* @Flow\Validate (type="StringLength", options={ "maximum"=150 })
* @ORM\Column (length=150)
* @var string
*/

protected S$description = '';

/% *

* The posts contained in this blog

* @ORM\OneToMany (mappedBy="blog")
* @ORM\OrderBy ({"date" = "DESC"})
* @var Collection<Post>
*/

protected Sposts;

public function __ _construct (string Stitle)

{

Sthis->posts = new ArrayCollection();
Sthis—->title = Stitle;

public function getTitle(): string
{

return Sthis->title;

(continues on next page)

2.2. Part ll: Getting Started 59

Flow Framework, Release 7.0.x

(continued from previous page)

public function setTitle(string Stitle): void
{
Sthis->title = Stitle;
}
public function getDescription(): string

{

return S$this->description;

public function setDescription(string S$description): void {
Sthis->description = S$desc

ption;

public function getPosts(): Collection
{

return Sthis->posts;

J ko
* Adds a post to this blog
*/
public function addPost (Post S$post): void
{
Sthis->posts—->add(Spost);

J *k
* Removes a post from this blog
*/
public function removePost (Post Spost): void

{

Sthis—->posts—>removeElement (Spost) ;

Tip: The @Flow... and @ORM... strings in the code are called Annotations. They are namespaced like PHP
classes, so for the above code to work you must add a line like:

use Doctrine\ORM\Mapping as ORM;

to the files as well. Add it right after the use statement for the Flow annotations that is already there.

As you can see there’s nothing really fancy in it, the class mostly consists of getters and setters. Let’s take a closer
look at the model line-by-line:

Classes/Acme/Blog/Domain/Model/Blog.php:

namespace Acme\Blog\Domain\Model;

This namespace declaration must be the very first code in your file.

Classes/Acme/Blog/Domain/Model/Blog.php:

60 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;

use Neos\Flow\Annotations as Flow;

use Doctrine\ORM\Mapping as ORM;

These use statements import PHP namespaces to the current scope. They are not required but can make the code much
more readable. Look at the PHP manual to read more about PHP namespaces.

Classes/Acme/Blog/Domain/Model/Blog.php:

J ok
* A blog that contains a list of posts
*
* @Flow\Entity
*/

On the first glance this looks like a regular comment block, but it’s not. This comment contains annotations which
are an important building block in Flow’s configuration mechanism.

The annotation marks this class as an entity. This is an important piece of information for the persistence framework
because it declares that

* this model is an entity according to the concepts of Domain-Driven Design
* instances of this class can be persisted (i.e. stored in the database)

¢ According to DDD, an entity is an object which has an identity, that is even if two objects with the same values
exist, their identity matters.

The model’s properties are implemented as regular class properties:

Classes/Acme/Blog/Domain/Model/Blog.php:

J ok k
* @Flow\Validate (type="NotEmpty")
* @Flow\Validate (type="StringLength", options={ "minimum"=3, "maximum"=80 })
* @ORM\Column (1length=80)
* @var string
*/

protected Stitle;

J ko
* @Flow\Validate (type="StringLength", options={ "maximum"=150 })
* @ORM\Column (length=150)
* @var string
*/
protected S$description = '';

J ok k
+* The posts contained in this blog

* @ORM\OneToMany (mappedBy="blog")
* @ORM\OrderBy ({"date" = "DESC"})
* @var Collection<Post>
*/

protected Sposts;

Each property comes with a @var annotation which declares its type. Any type is fine, be it simple types (like
string, integer, or boolean) or classes (like \DateTime, \ACME\Foo\Domain\Model\Bar\Baz,
Bar\Baz, or an imported class like Baz).

2.2. Part ll: Getting Started 61

https://php.net/manual/en/language.namespaces.php

Flow Framework, Release 7.0.x

The @var annotation of the $posts property differs a bit from the remaining comments when it comes to the
type. This property holds a list of Post objects contained by this blog — in fact this could easily have been an
array. However, an array does not allow the collection to be persisted by Doctrine 2 properly. We therefore use a
Collection? instance (which is a Doct rine\Common\Collections\Collection, but we imported it to
make the code more readable). The class name bracketed by the less-than and greater-than signs gives an important
hint on the content of the collection (or array). There are a few situations in which Flow relies on this information.

The OneToMany annotation is Doctrine 2 specific and provides more detail on the type association a property repre-
sents. In this case it tells Doctrine that a B1og may be associated with many Post instances, but those in turn may
only belong to one B1log. Furthermore the mappedBy attribute says the association is bidirectional and refers to the
property $Sblog in the Post class.

The OrderBy annotation is regular Doctrine 2 functionality and makes sure the posts are always ordered by their date
property when the collection is loaded.

The Validate annotations tell Flow about limits that it should enforce for a property. This annotation will be
explained in the Validation chapter.

The remaining code shouldn’t hold any surprises - it only serves for setting and retrieving the blog’s properties. This
again, is no requirement by Flow - if you don’t want to expose your properties it’s fine to not define any setters or
getters at all. The persistence framework can use other ways to access the properties’ values.

Post Model

We need a model for the posts as well, so kickstart it like this:

./flow kickstart:model —--force Acme.Blog Post \
'blog:Blog' \
title:string \
date:\DateTime \
author:string \
content:string

Note that we use the ——force option to overwrite the model - it was created along with the Post controller earlier
because we used the ——generate-related flag.

Adjust the generated code as follows:

Classes/Acme/Blog/Domain/Model/Post.php:

<?php
namespace Acme\Blog\Domain\Model;

J/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Neos\Flow\Annotations as Flow;
use Doctrine\ORM\Mapping as ORM;

J ok k
* @Flow\Entity
*/

class Post {

(continues on next page)

2 https://www.doctrine-project.org/projects/doctrine- orm/en/latest/reference/association-mapping.html#collections

62 Chapter 2. The Definitive Guide

https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html#collections

Flow Framework, Release 7.0.x

(continued from previous page)

Ve
* @Flow\Validate (type="NotEmpty")
* @ORM\ManyToOne (inversedBy="posts")
* @var Blog
*/
protected S$blog;

J *k
* @Flow\Validate (type="NotEmpty")
* @var string
*/

protected Ssubject;

J *k
* The creation date of this post (set in the constructor)
*
* @var \DateTime
*/
protected Sdate;

/% *
* @Flow\Validate (type="NotEmpty")
* @var string
*/

protected Sauthor;

VA
* @Flow\Validate (type="NotEmpty")
* @ORM\Column (type="text")
* @var string
*/
protected Scontent;

J *k

* Constructs this post

*/
public function __ _construct ()
{

Sthis—->date = new \DateTime ();

VA
+ @return Blog
*/
public function getBlog(): ?Blog
{
return Sthis->blog;

public function setBlog(Blog S$blog): void
{
Sthis->blog = $blog;
Sthis->blog->addPost ($this);

public function getSubject (): string
{

(continues on next page)

2.2. Part ll: Getting Started

63

Flow Framework, Release 7.0.x

(continued from previous page)

return Sthis->subject;

public function setSubject (string S$subject): void

Sthis—->subject = Ssubject;

public function getDate(): \DateTimeInterface

return S$Sthis->date;

public function setDate (\DateTime Sdate): void

Sthis->date = S$date;

public function getAuthor(): string

return Sthis->author;

public function setAuthor (string Sauthor): void

Sthis->author = S$author;

public function getContent (): string

return Sthis->content;

public function setContent (string Scontent): void

Sthis->content = S$content;

Blog Repository

According to our earlier statements regarding “Modeling”, you need a repository for storing the blog:

A repository acts as the bridge between the holy lands of business logic (domain models) and the dirty underground of
infrastructure (data storage). This is the only place where queries to the persistence framework take place - you never
want to have those in your domain models or controllers.

Similar to models the directory for your repositories is Classes/Acme/Blog/Domain/Repository/. You
can kickstart the repository with:

./flow kickstart:repository Acme.Blog Blog

This will generate a vanilla repository for blogs containing this code:

Classes/Acme/Blog/Domain/Repository/BlogRepository.php:

64 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

f 1

- BlosRepository Blos
totler string

blegs: <flay> desgription siring
pasts ofast>

adol(Biag fisias)

rerevel Bles §hiag)

{ndAetivel)

{ A

Fig. 10: Blog Repository and Blog

<?php
namespace Acme\Blog\Domain\Repository;

/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Neos\Flow\Annotations as Flow;
use Neos\Flow\Persistence\Repository;

VR
* @Flow\Scope ("singleton")
*/
class BlogRepository extends Repository

{

// add customized methods here

There’s no code you need to write for the standard cases because the base repository already comes with methods
like add, remove, findAll, findBy+ and findOneBy*3 methods. But for the sake of this demonstration lets
assume we plan to have multiple blogs at some time. So lets add a findActive () method that - for now - just
returns the first blog in the repository:

<?php
namespace Acme\Blog\Domain\Repository;

/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

(continues on next page)

3 findBy« and findOneBys are magic methods provided by the base repository which allow you to find objects by prop-
ertiecs. The BlogRepository for example would allow you to call magic methods like findByDescription('foo') or
findOneByTitle ('bar').

2.2. Part ll: Getting Started 65

Flow Framework, Release 7.0.x

(continued from previous page)

use Acme\Blog\Domain\Model\Blog;
use Neos\Flow\Annotations as Flow;
use Neos\Flow\Persistence\Repository;

J ko
* @Flow\Scope ("singleton")
*/
class BlogRepository extends Repository

{

J ok x
* Finds the active blog.

* For now, only one Blog 1s supported anyway so we just assume that only one
* Blog object resides in the Blog Repository.

* @return Blog/null The active blog or null if none exists

*/
public function findActive(): ?Blog
{
Squery = Sthis->createQuery();
return Squery->execute ()->getFirst();

Remember that a repository can only store one kind of an object, in this case blogs. The type is derived from the
repository name: because you named this repository BlogRepository Flow assumes that it’s supposed to store
Blog objects.

To finish up, open the repository for our posts (which was generated along with the Post controller we kickstarted
earlier) and add the following find methods to the generated code:

* findByBlog () to retrieve all posts of a given blog
e findPrevious () to get the previous post within the current blog
* findNext () to get the next post within the current blog
The resulting code should look like:
Classes/Acme/Blog/Domain/Repository/PostRepository.php:

<?php
namespace Acme\Blog\Domain\Repository;

/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Acme\Blog\Domain\Model\Blog;

use Acme\Blog\Domain\Model\Post;

use Neos\Flow\Annotations as Flow;

use Neos\Flow\Persistence\QueryInterface;

use Neos\Flow\Persistence\QueryResultInterface;
use Neos\Flow\Persistence\Repository;

(continues on next page)

66 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

Jxx
* @Flow\Scope ("singleton")
*/
class PostRepository extends Repository

{

J *k
* Finds posts by the specified blog
*
* @param Blog Sblog The blog the post must refer to
* @return QueryResultInterface The posts
*/
public function findByBlog(Blog $blog): QueryResultInterface
{
Squery = Sthis->createQuery();
return
Squery->matching(
Squery->equals ('blog', S$blog)
)
—>setOrderings (array ('date' => QueryInterface::0RDER__
—~DESCENDING))
->execute () ;

J ok *
* Finds the previous of the given post
*
* @param Post Spost The reference post
* @return Post/|null The previous post or null if the given $post is the,
—first one

*/
public function findPrevious (Post S$Spost): ?Post
{
Squery = $this->createQuery();
return
Squery->matching(
Squery->logicalAnd ([
Squery->equals ('blog', Spost->getBlog()),
Squery->lessThan ('date', S$post—->getDate())
1)
)
->setOrderings (array ('date' => QueryInterface::0RDER__
—DESCENDING))
->execute ()
—->getFirst ();
}
J *k

* Finds the post next to the given post
*
* @param Post Spost The reference post
* @return Post|null The next post or null if the given $post is the last one
*/
public function findNext (Post S$post): ?Post
{

Squery = S$this->createQuery();

(continues on next page)

2.2. Part ll: Getting Started 67

Flow Framework, Release 7.0.x

(continued from previous page)

return
Squery->matching(
Squery->logicalAnd ([
Squery->equals ('blog', Spost->getBlog()),
Squery->greaterThan ('date', S$post->getDate())
1)
)

—->setOrderings (array ('date' => QueryInterface::0RDER__
< ASCENDING))

->execute ()
—->getFirst ();

Tags and Comments

Until now, we have all the basics for our blog to function. A blog consists of multiple posts that each consists of a
subject, content and some meta-data about the author and time of publishing. If you recall though, we also modelled
the post to be labelled with one or multiple tags and users to comment on posts.

Without thinking, we might be starting to just copy & paste the code from the blog -> post relation, since that is also

a 1:n relation. However, there are a few problems waiting for us, if we would go this route. Remember how we found
that the comments and tags are parts of the Post Aggregate:

biass: <Plas>

titles siring
deseription: string
pasts: <Pasts

astil] Biag §ing)
rerave(Biny fhisy)
LindAgtive()
LindAuigd

bisy Bles

date! DmTiut
posts: <Pasix puther: string

content: GEring
aokt{Past fpast) carnegnts: el amments>
rerievePest fpast) tags <Tas>
i) states: inteser
{inchBy Biag{Bins §blas)
{indlatesti§lint « 5)

Fig. 11: The Post Aggregate

This means, that we should not have any means to directly access tags or comments outside of a post. Therefore they
should not have a repository. Also, since we never directly access either one, there is no reason we need to reach the

68 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

post they belong to. The access path is always in one direction starting from the post. In the terms of data modelling,
we have a unidirectional one-to-many relation. As we learned earlier, Doctrine provides a OneToMany annotation.
OneToMany relations in Doctrine are always bidirectional and, even worse, the many side is the so called “owning
side” of the relation. This means, that to update the relation in any way, the owning side entity needs to be persisted.
This is not matching our domain model, where the post is the Aggregate Root and hence the entity we persist
from. To make Doctrine work as we intend our domain model, we’d need to annotate the relation as a ManyToMany
and add a unique constraint on the “one” side’. Since this is not intuitive, Flow 7+ will translate a OneToMany
relation without a specified mappedBy attribute to an according ManyToMany relation, so this modelling mismatch
becomes transparent.

First, let’s add models for the comment and tag:

./flow kickstart:model Acme.Blog Tag name:string
./flow kickstart:model Acme.Blog Comment \
date:\DateTime \
author:string \
emailAddress:string \
content:string

Then adjust the post model code as follows:

Classes/Acme/Blog/Domain/Model/Post.php:

<?php
namespace Acme\Blog\Domain\Model;

/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Neos\Flow\Annotations as Flow;

use Doctrine\ORM\Mapping as ORM;

use Doctrine\Common\Collections\Collection;

use Doctrine\Common\Collections\ArrayCollection;

J ok k
* @Flow\Entity
*/

class Post {

J *k
* @Flow\Validate (type="NotEmpty")
* @ORM\ManyToOne (inversedBy="posts")
* @var Blog
*/
protected Sblog;

J*k

* @Flow\Validate (type="NotEmpty")
* @ORM\Column (type="text")

* @var string

*/

(continues on next page)

4 https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/unitofwork- associations. html#bidirectional-associations
5 https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html#one-to-many-unidirectional- with-join-table

2.2. Part ll: Getting Started 69

https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/unitofwork-associations.html#bidirectional-associations
https://www.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html#one-to-many-unidirectional-with-join-table

Flow Framework, Release 7.0.x

(continued from previous page)

protected Scontent;

/% *
* @ORM\OneToMany
* @var Collection<Comment>
*/

protected Scomments;

Vs
* @ORM\ManyToMany
* @var Collection<Tag>
*/

protected Stags;

J ok *
* Constructs this post
*/
public function __ construct ()
{
Sthis—>date = new \DateTime () ;
Sthis—->comments = new ArrayCollection();
Sthis->tags = new ArrayCollection();

VA

* @return Collection<Comment>

*/
public function getComments(): Collection
{

return Sthis->comments;

public function addComment (Comment Scomment): void
{

Sthis->comments—->add (Scomment) ;

public function deleteComment (Comment Scomment): void
{

Sthis—->comments—->remove (Scomment) ;

J *k

* @return Collection<Tag>

*/
public function getTags(): Collection
{

return Sthis->tags;

public function addTag(Tag Stag): void
{
Sthis->tags—->add(stag) ;

(continues on next page)

70

Chapter 2.

The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

public function removeTag(Tag Stag): void
{

Sthis->tags—->remove ($Stag) ;

We dot not have a orphanRemoval=true on the tags relations. Orphan removal tells doctrine to delete an
entity, when the relation to it is unset, i.e. when the collections remove () method is invoked. Of course we do not

want to delete a tag from the database completely, when we just untag a single post, since another post might still have
this tag.

2.2.8 Controller

Now that we have the first models and repositories in place we can almost move forward to creating our first controller.
There are two types of controllers in Flow:

e ActionControllers are triggered by regular HTTP requests, and

e CommandControllers are usually invoked via the Command Line Interface.

Setup Controller

The SetupCommandController will be in charge of creating a B1og object, setting a title and description and
storing it in the BlogRepository:

./flow kickstart:commandcontroller Acme.Blog Blog

The kickstarter created a very basic command controller containing only one command, the exampleCommand:

Classes/Acme/Blog/Command/Blog CommandController.php:

<?php
namespace Acme\Blog\Command;

/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Neos\Flow\Annotations as Flow;
use Neos\Flow\Cli\CommandController;

class BlogCommandController extends CommandController

{

J *k
* An example command
*
* The comment of this command method is also used for Flow's help screens._
—The first line should give a very short
* summary about what the command does. Then, after an empty line, you should
—explain in more detail what the command

* does. You might also give some usage example.
*

(continues on next page)

2.2. Part ll: Getting Started 71

Flow Framework, Release 7.0.x

(continued from previous page)

* It is important to document the parameters with param tags, because that,
—information will also appear in the help

* screen.

*

* @param string SrequiredArgument This argument is required

* @param string SoptionalArgument This argument 1is optional

*/
public function exampleCommand (string SrequiredArgument, string
—SoptionalArgument = null): void
{
Sthis->outputLine ('You called the example command and passed "%$s" as_
—the first argument.', array($requiredArgument));

}

Let’s replace the example with a setupCommand that can be used to create the first blog from the command line:

Classes/Acme/Blog/Command/BlogCommandController.php:

<?php
namespace Acme\Blog\Command;

/% *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Acme\Blog\Domain\Model\Blog;

use Acme\Blog\Domain\Model\Post;

use Acme\Blog\Domain\Repository\BlogRepository;
use Acme\Blog\Domain\Repository\PostRepository;
use Neos\Flow\Annotations as Flow;

use Neos\Flow\Cli\CommandController;

class BlogCommandController extends CommandController
{

J *k
* @Flow\Inject
* @var BlogRepository
*/
protected S$blogRepository;

J ok *
* @Flow\Inject
* @var PostRepository
*/
protected SpostRepository;

J x*
* A command to setup a blog
*
* With this command you can kickstart a new blog.
*
* @param string S$blogTitle the name of the blog to create
* @param bool $reset set this flag to remove all previously created blogs_

;
=amrd post (continues on next page)

72 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

*/
public function setupCommand(string $blogTitle, bool Sreset = false): void
{
if (Sreset) {
$this->blogRepository—->removeAll () ;
Sthis->postRepository->removeAll () ;

Sblog = new Blog($blogTitle);
Sblog->setDescription('A blog about Foo, Bar and Baz.');
Sthis->blogRepository->add($blog) ;

ost = new Post ();

bost—>setBlog (S$blog);

st—->setAuthor ('John Doe');

st—->setSubject ('Example Post');

Spost—->setContent ('Lorem ipsum dolor sit amet, consectetur
—adipisicing elit.' . chr(10) . 'Sed do eiusmod tempor incididunt ut labore et
—dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco,,

—laboris nisi ut aliquip ex ea commodo consequat.');
Sthis—>postRepository—->add($Spost) ;

Sthis->outputLine ('Successfully created a blog "%$s"', [$blogTitle]);

You can probably figure out easily what the setupCommand does — it empties the BlogRepository and
PostRepository if the ——reset flag is set, creates a new Blog object and adds it to the BlogRepository.
In addition a sample blog post is created and added to the PostRepository and blog. Note that if you had omitted
the lines:

’$thisf>blogRepository7>add($blog);

and

Sthis->postRepository->add (Spost) ;

the blog and the post would have been created in memory but not persisted to the database.
Using the blog and post repository sounds plausible, but where do you get the repositories from?

Classes/Acme/Blog/Command/Blog CommandController.php:

VEE:
* @Flow\Inject
* @var BlogRepository
*/

protected S$blogRepository;

The property declarations for $blogRepository (and $postRepository) is marked with an Inject annota-
tion. This signals to the object framework: I need the blog repository here, please make sure it’s stored in this member
variable. In effect Flow will inject the blog repository into the $SblogRepository property right after your con-
troller has been instantiated. And because the blog repository’s scope is singleton', the framework will always inject
the same instance of the repository.

! Remember, prototype is the default object scope and because the BlogRepository does contain a Scope annotation, it has the singleton
scope instead.

2.2. Part ll: Getting Started 73

Flow Framework, Release 7.0.x

There’s a lot more to discover about Dependency Injection and we recommend that you read the whole chapter on
objects in Part I1I: Manual once you start with your own coding.

To create the required database tables we now use the command line support to generate the tables for our package:

./flow doctrine:migrationgenerate

Do you want to move the migration to one of these Packages?
[0] Don't Move
[1] Neos.Eel
[2] Neos.Flow
[3] Neos.Fluid
[3] Neos.Kickstart
[4] Neos.Welcome
[5] Acme.Blog

Hit a key to move the new migration to the Acme . Blog package (in this example key “5”") and press <ENTER>.
You will now find the generated migration in Migrations/Mysql/Version<YYYYMMDDhhmmss>.php. Whenever you
auto-generate a migration take a few minutes to verify that it contains (only) the changes you want to apply. In this
case the migration should look like this:

<?php
namespace Neos\Flow\Persistence\Doctrine\Migrations;

use Doctrine\Migrations\AbstractMigration,
Doctrine\DBAL\Schema\Schema;

J ok *
+ Initial migration, creating tables for the "Blog" and "Post" domain models
*/
class Version20150714161019 extends AbstractMigration
{
J *k
* @return string
*/
public function getDescription(): string
{
return 'Initial migration, creating tables for the "Blog" and "Post"
—~domain models';

}

J ok *

* @param Schema Sschema

* @return void

*/
public function up (Schema Sschema): void
{

Sthis->abortIf($this->connection->getDatabasePlatform()->getName () !
—== "mysqgl");

Sthis->addSqgl ("CREATE TABLE acme_blog_domain_model_blog (persistence_
—object_identifier VARCHAR (40) NOT NULL, title VARCHAR (80) NOT NULL, description,,
—VARCHAR (150) NOT NULL, PRIMARY KEY (persistence_object_identifier)) DEFAULT,,
—CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci ENGINE = InnoDB");

Sthis—->addSqgl ("CREATE TABLE acme_blog_domain_model_post (persistence_
—object_identifier VARCHAR (40) NOT NULL, blog VARCHAR (40) DEFAULT NULL, subiject,
—VARCHAR (255) NOT NULL, date DATETIME NOT NULL, author VARCHAR(255) NOT NULL,
—content LONGTEXT NOT NULL, INDEX IDX_EF2000AAC0155143 (blog), PRIMARY,

—KEY (persistence_object_identifier)) DEFAULT CHARACTER SET utf8mb4 COLLACODtinues @miekt page)
—unicode_ci ENGINE = InnoDB");

74 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

Sthis—>addSqgl ("ALTER TABLE acme_blog_domain_model_post ADD CONSTRAINT,
—FK_EF2000AAC0155143 FOREIGN KEY (blog) REFERENCES acme_blog_domain_model_blog,
— (persistence_object_identifier)");

}

Vs
* @param Schema S$schema
* @return void
*/
public function down (Schema S$schema): void

{

Sthis->abortIf($this->connection->getDatabasePlatform()->getName () !
== "mysql") ;

Sthis—->addSqgl ("ALTER TABLE acme_blog_domain_model_post DROP FOREIGN,,
—KEY FK_EF2000AAC0155143");

Sthis->addSqgl ("DROP TABLE acme_blog_domain_model_blog");

Sthis—->addSqgl ("DROP TABLE acme_blog_domain_model_post");

Now you can execute all pending migrations to update the database schema:

./flow doctrine:migrate

And finally you can try out the setupCommand:

./flow blog:setup "My Blog"

and the CLI should respond with:

Successfully created a blog "My Blog"

This is all we need for moving on to something more visible: the blog posts.

Basic Post Controller

Now let us add some more code to .../Classes/Acme/Blog/Controller/PostController.php:

<?php
namespace Acme\Blog\Controller;

J/ * *
* This script belongs to the Flow package "Acme.Blog". *
* *
* */

use Acme\Blog\Domain\Repository\BlogRepository;
use Acme\Blog\Domain\Repository\PostRepository;
use Neos\Flow\Annotations as Flow;

use Neos\Flow\Mvc\Controller\ActionController;
use Acme\Blog\Domain\Model\Post;

class PostController extends ActionController

{

(continues on next page)

2.2. Part ll: Getting Started 75

Flow Framework, Release 7.0.x

(continued from previous page)

VE
* @Flow\Inject
* @var BlogRepository
*/
protected S$blogRepository;

J *k
* @Flow\Inject
* @var PostRepository
*/
protected SpostRepository;

J *k
* Index action

*

* @return string HTML code

*/
public function indexAction(): string
{
= Sthis->blogRepository->findActive () ;
put = '
<hl>Posts of "' . S$blog->getTitle() . '"</hl>
";
foreach ($blog->getPosts|()
Soutput .= '<1i>' '</1i>";
}
Soutput .= '';
return Soutput;
}
//

The indexAction retrieves the active blog from the BlogRepository and outputs the blog’s title and post
subject lines”. A quick look at http:/dev.tutorial.local/acme.blog/post® confirms that the SetupController has
indeed created the blog and post:

Create Action

In the SetupController we have seen how a new blog and a post can be created and filled with some hardcoded
values. At least the posts should, however, be filled with values provided by the blog author, so we need to pass the
new post as an argument to a createAction inthe PostController:

Classes/Acme/Blog/Controller/PostController.php:

/7

Ve

(continues on next page)

2 Don’t worry, the action won’t stay like this — of course later we’ll move all HTML rendering code to a dedicated view.
3 The acme.blog stands for the package Acme.Blog and post specifies the controller PostController.

76 Chapter 2. The Definitive Guide

http://dev.tutorial.local/acme.blog/post

Flow Framework, Release 7.0.x

Posts of "My Blog"

1. Example Post

Fig. 12: Output of the indexAction

(continued from previous page)

* Creates a new post
*
* @param Post SnewPost
* @return void
*/
public function createAction(Post SnewPost)
{
Sthis->postRepository—>add (SnewPost) ;
Sthis->addFlashMessage ('Created a new post.');
Sthis—->redirect ('index"');

The createAction expects a parameter SnewPost which is the Post object to be persisted. The code is quite
straight-forward: add the post to the repository, add a message to some flash message stack and redirect to the index
action. Try calling the createAct ion now by accessing http://dev.tutorial.local/acme.blog/post/create:

Flow analyzed the new method signature and automatically registered $newPost as a required argument for
createAction. Because no such argument was passed to the action, the controller exits with an error.

So, how do you create a new post? You need to create some HTML form which allows you to enter the post details
and then submits the information to the createAction. But you don’t want the controller rendering such a form —
this is clearly a task for the view!

2.2. Part ll: Getting Started 77

http://dev.tutorial.local/acme.blog/post/create

Flow Framework, Release 7.0.x

Uncaught Exception in Flow

00156z
00157:
00158:
00159:
00160:

00148:
00149:
00150:
00151:
00152:

00102:
00103:

}
$this->mapRequestArgumentsToControllerArguments() ;

if ($this->view === NULL

try {

S$this->emitBeforeControllerInvocation($request, $response, Scontroller);
Scontroller->processRequest(S5request, S5Sresponse);

$this->emitAf 1lerI ion($request, $response, Scontroller);
catch Sexception

/** @var ActionRequest Srequest */
1Requests($

Sfirewall->blockIlleaa request):

Fig. 13: Create action called without argument

78

Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

2.2.9 View

The view’s responsibility is solely the visual presentation of data provided by the controller. In Flow views are cleanly
decoupled from the rest of the MVC framework. This allows you to either take advantage of Fluid (Flow’s template
engine), write your own custom PHP view class or use almost any other template engine by writing a thin wrapper
building a bridge between Flow’s interfaces and the template engine’s functions. In this tutorial we focus on Fluid-
based templates as this is what you usually want to use.

Resources

Before we design our first Fluid template we need to spend a thought on the resources our template is going to use
(I’'m talking about all the images, style sheets and javascript files which are referred to by your HTML code). You
remember that only the Web directory is accessible from the web, right? And the resources are part of the package and
thus hidden from the public. That’s why Flow comes with a powerful resource manager whose main task is to manage
access to your package’s resources.

The deal is this: All files which are located in the public resources directory of your package will automatically be
mirrored to somewhere that is publicly accessible. By default, Flow just symlinks those files to the public resources
directory below the Web folder.

Let’s take a look at the directory layout of the Acme.Blog package:

Table 1: Directory structure of a Flow package

Directory Description

Classes/ All the .php class files of your package

Documentation/ The package’s manual and other documentation
Resources/ Top folder for resources

Resources/Public/ | Public resources - will be mirrored to the Web directory
Resources/Private/ | Private resources - won’t be mirrored to the Web directory

No matter what files and directories you create below Resources/Public/ - all of them will, by default, be
symlinked to Web/_Resources/Static/Packages/Acme.Blog/ on the next hit.

Tip: There are more possible directories in a package and we do have some conventions for naming certain sub
directories. All that is explained in fine detail in Part 1.

Important: For the blog example in this tutorial we created some style sheet to make it more appealing. If you’d
like the examples to use those styles, then it’s time to copy Resources/Public/ from the git repository (https:
//github.com/neos/Acme.Blog) to your blog’s public resources folder (Packages/Application/Acme.Blog/
Resources/Public/).

2.2. Part ll: Getting Started 79

https://github.com/neos/Acme.Blog
https://github.com/neos/Acme.Blog

Flow Framework, Release 7.0.x

Layouts

Fluid knows the concepts of layouts, templates and partials. Usually all of them are just plain HTML files which
contain special tags known by the Fluid template view. The following figure illustrates the use of layout, template and
partials in our blog example:

y0AD]

;-Iﬁecrr: Posts h.d

My Socord Poal
Wiy wiry fenl post

_Myveryfistpost ___________ Y
| et

Liro o ki 3 ot covmehahs sadipacing B, §54 i rrmay
eirrmod lempod ivvitunt ul labome of dolome Mmagha &

vollupiua, Al vero aos of accusam of justo duo dolores of

KESd pubBgren, No 568 Lakimals sancius il Lomem peam 3o

WAz

Pawared by FLOW ¥

Fig. 14: Layout, Template and Partial

A Fluid layout provides the basic layout of the output which is supposed to be shared by multiple templates. You will
use the same layout throughout this tutorial - only the templates will change depending on the current controller and
action. Elements shared by multiple templates can be extracted as a partial to assure consistency and avoid duplication.

Let’s build a simple layout for your blog. You only need to adjust the file called Default .html inside the Acme.
Blog/Resources/Private/Layouts directory to contain the following code:

Resources/Private/Layouts/Default.html:

<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="utf-8">

(continues on next page)

80 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

<title>{blog.title} - Flow Blog Example</title>

<link rel="stylesheet" href="../../Public/Styles/App.css" type="text/css" />
</head>
<body>

<header>
<f:if condition="{blog}">
<f:link.action action="index" controller="Post">
<hl>{blog.title}</hl>
</f:link.action>
<p class="description">{blog.description -> f:format.crop (maxCharacters:
—80) }</p>
</f:if>
</header>

<div id="content">
<f:flashMessages class="flashmessages" />
<f:render section="MainContent" />

</div>

<footer>

Powered by Flow

</footer>

</body>
</html>

Tip: If you don’t want to download the stylesheet mentioned above, you can import it directly from the github repos-
itory, replacing ../../Public/Styles./App.css* with https://raw.githubusercontent.com/neos/Acme.
Blog/master/Resources/Public/Styles/App.css Of course you can also just remove the whole <1ink
rel="stylesheet" ... lineif youdon’t care about style.

On first sight this looks like plain HTML code, but you’ll surely notice the various <f: ... > tags. Fluid
provides a range of view helpers which are addressed by these tags. By default they live in the £ namespace resulting
intags like <f:if>or<f:1link.action>. You can define your own namespaces and even develop your own view
helpers, but for now let’s look at what you used in your layout:

The first thing to notice is <f : 1 £>, a Fluid tag in <body>. This tag instructs Fluid to render its content only if its
condition is true. In this case, condition="{blog}" tells the <f:1if> tag to render only if blog is set.

Look at that condition again, noting the curly braces: {blog}. This is a variable accessor. It is very similar to some
Fluid markup that we skipped over in <head>:

Resources/Private/Layouts/Default.html.:

<title>{blog.title} - Flow Blog Example</title>

As you will see in a minute, Fluid allows your controller to define variables for the template view. In order to display
the blog’s name, you’ll need to make sure that your controller assigns the current B1 og object to the template variable
blog. The value of such a variable can be inserted anywhere in your layout, template or partial by inserting the
variable name wrapped by curly braces. However, in the above case b1og is not a value you can output right away —
it’s an object. Fortunately Fluid can display properties of an object which are accessible through a getter function: to
display the blog title, you just need to note down {blog.title} and Fluid will internally call the getTitle ()

2.2. Part ll: Getting Started 81

Flow Framework, Release 7.0.x

method of the B1og instance.

We’ve looked at two kinds of Fluid syntax: tag-style view helpers (<f:1if>), and variable accessors ({blog.
title}). Another kind of Fluid syntax is an alternative way to address view helpers, the view helper shorthand
syntax:

Resources/Private/Layouts/Default. html:

{blog.description —> f:format.crop (maxCharacters: 80)}

{f:format.crop(...)}" instructs Fluid to crop the given value (in this case the Blog’s description). With the
maxCharacters argument the description will be truncated if it exceeds the given number of characters. The
generated HTML code will look something like this:

Resources/Private/Layouts/Default. html:

This is a very long description that will be cropped if it exceeds eighty charac...

If you look at the remaining markup of the layout you’ll find more uses of view helpers, including f1ashMessages.
It generates an unordered list with all flash messages. Well, maybe you remember this line in the createAction of
our PostController:

Sthis->addFlashMessage ('Created a new post.');

Flash messages are a great way to display success or error messages to the user beyond a single request. And because
they are so useful, Flow provides a FlashMessageContainer with some helper methods and Fluid offers the
flashMessages view helper. Therefore, if you create a new post, you’ll see the message Your new post was
created at the top of your blog index on the next hit.

There’s only one view helper you need to know about before proceeding with our first template, the render view
helper:

Resources/Private/Layouts/Default. html:

<f:render section="MainContent" />

This tag tells Fluid to insert the section MainContent defined in the current template at this place. For this to work
there must be a section with the specified name in the template referring to the layout — because that’s the way it
works: A template declares which layout it is based on, defines sections which in return are included by the layout.
Confusing? Let’s look at a concrete example.

Templates

Templates are, as already mentioned, tailored to a specific action. The action controller chooses the right template
automatically according to the current package, controller and action - if you follow the naming conventions. Let’s
replace the automatically generated template for the Post controller’s index action in Acme .Blog/Resources/
Private/Templates/Post/Index.html with some more meaningful HTML:

Resources/Private/Templates/Post/Index.html:

<f:layout name="Default" />

<f:section name="MainContent">
<f:if condition="{blog.posts}">
<f:then>

<f:for each="{blog.posts}" as="post">

(continues on next page)

82 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

<1li class="post">
<f:render partial="PostActions" arguments="{post: post}"/>
<h2>
<f:link.action action="show" arguments="{post: post}">
— {post.subject}</£f:1link.action>

</h2>
<f:render partial="PostMetaData" arguments="{post: post}"/>
</1li>
</f:for>

</f:then>

<f:else>
<p>No posts created yet.</p>

</f:else>
</£:if>
<p>

<f:link.action action="new">Create a new post</f:link.action><
/p>

</f:section>

There you have it: In the first line of your template there’s a reference to the “Default” layout. All HTML code is
wrapped in a <f : sect ion> tag. Even though this is the way you usually want to design templates, you should know
that using layouts is not mandatory — you could equally put all your code into one template and omit the <f : layout>
and <f : section> tags.

The main job of this template is to display a list of the most recent posts. An <f:1i£f> condition makes sure that the
list of posts is only rendered if b1log actually contains posts. But currently the view doesn’t know anything about a
blog - you need to adapt the the PostController to assign the current blog:

xClasses/Acme/Blog/Controller/PostController.phpx:

J ko
* @return void
*/
public function indexAction() {
Sblog = S$this->blogRepository->findActive () ;
Sthis->view->assign('blog', S$blog);

To fully understand the above code you need to know two facts:
* Sthis->view is automatically set by the action controller and points to a Fluid template view.

* if an action method returns null, the controller will automatically call $this->view->render () after
executing the action.

But soon you’ll see that we need the current Blog in all of our actions, so how to assign it to the view without repeating
the same code over and over again? With ease: We just assign it as soon as the view is initialized:

xClasses/Acme/Blog/Controller/PostController.phpx*:

protected function initializeView (ViewInterface Sview): void
{
Sblog = S$Sthis->blogRepository->findActive () ;
Sthis->view->assign('blog', S$blog);

(continues on next page)

2.2. Part ll: Getting Started 83

Flow Framework, Release 7.0.x

(continued from previous page)

public function indexAction(): void
{
}

The initializeView method is called before each action, so it provides a good opportunity to assign values to
the view that should be accessible from all actions. But make sure only to use it for truly global values in order not to
waste memory for unused data.

After creating the folder Resources/Private/Partials/ add the following two partials:

+*Resources/Private/Partials/PostMetaData.htmlx*:

<p class="metadata">
Published on {post.date -> f:format.date(format: 'Y-m-d')} by {post.author}
</p>

Resources/Private/Partials/PostActions.html:

<ul class="actions">
<1li>
<f:link.action action="edit" arguments="{post: post}">Edit</£f:1link.action>
</1li>
<1li>
<f:form action="delete" arguments="{post: post}">
<f:form.submit name="delete" value="Delete" />
</f:form>
</1li>

The PostMetaData partial renders date and author of a post. The PostActions partial an edit link and a button
to delete the current post. Both are used as well in the list view (indexAction) as well as in the detail view
(showAction) of the post and Partials allow us to easily re-use the parts without having to duplicate markup.

Now you should now see the list of recent posts by accessing http://dev.tutorial.local/acme.blog/post:

To create new posts and edit existing ones from the web browser, we need to create Forms:

Forms

Create a New Post

Time to create a form which allows you to enter details for a new post. The first component you need is the
newAction whose sole purpose is displaying the form:

Classes/Acme/Blog/Controller/PostController.php:

J ok k
* Displays the "Create Post" form
*
* @return void
*/
public function newAction(): void
{
}

84 Chapter 2. The Definitive Guide

http://dev.tutorial.local/acme.blog/post

Flow Framework, Release 7.0.x

Example Post Edit Delete

Published on 2015-07-30 by John Dowe

Create a new post

Powered by Flow

Fig. 15: The list of blog posts

2.2. Part ll: Getting Started 85

Flow Framework, Release 7.0.x

No code? What will happen is this: the action controller selects the New.html template and assigns it to
$this—->view which will automatically be rendered after newAct ion has been called. That’s enough for display-
ing the form. The current blog is already assigned in initializeView () allowing the blog title and description
to be rendered in our header (defined in Default .html). Otherwise those would be empty.

The second component is the actual form. Adjust the template New.html in the Resources/Private/
Templates/Post/ folder:

Resources/Private/Templates/Post/New.html:

<f:layout name="Default" />

<f:section name="MainContent">
<h2>Create new post</h2>
<f:form action="create" objectName="newPost">
<f:form.hidden property="blog" value="{blog}" />

<label for="post-author">Author</label>
<f:form.textfield property="author" id="post-author" />

<label for="post-subject">Subject</label>
<f:form.textfield property="subject" id="post-subject" />

<label for="post-content">Content</label>
<f:form.textarea property="content" rows="5" cols="30" id="post-content" />

<f:form.submit name="submit" value="Publish Post" />
</f:form>
</f:section>

Here is how it works: The <f : form> view helper renders a form tag. Its attributes are similar to the action link view
helper you might have seen in previous examples: act ion specifies the action to be called on submission of the form,
controller would specify the controller and package the package respectively. If controller or package
are not set, the URI builder will assume the current controller or package respectively. ob jectName finally specifies
the name of the action method argument which will receive the form values, in this case “newPost”.

It is important to know that the whole form is (usually) bound to one object and that the values of the form’s elements
become property values of this object. In this example the form contains (property) values for a post object. The
form’s elements are named after the class properties of the Post domain model: blog, author, subject and
content. Let’s look at the createAction again:

Note: Mind that newPost is not assigned to the view in this example. Assigning this object is only needed if you
have set default values to your model properties. So if you for example have a protected $hidden = true
definition in your model, a <f:form.checkbox property="hidden" /> will not be checked by default,
unless you instantiate $SnewPost in your index action and assign it to the view.

Classes/Acme/Blog/Controller/PostController.php:

J ok k
* Creates a new post
*/
public function createAction (Post SnewPost): void
{
Sthis—->postRepository—>add($newPost);
Sthis->addFlashMessage ('Created a new post.');
Sthis->redirect ('index');

86 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

It’s important that the createAction uses the type hint Post (which expands to \Acme\Blog\Domain\
Model\Post) and that it comes with a proper @param annotation because this is how Flow determines the type
to which the submitted form values must be converted. Because this action requires a Post it gets a post (object) - as
long as the property names of the object and the form match.

Time to test your new newAction and its template — click on the little plus sign above the first post lets the
newAction render this form:

Create new post

Author
Subject

Content

Publish Post

Fig. 16: Form to create a new post
Enter some data and click the submit button:

You should now find your new post in the list of posts.

Edit a Post

While you’re dealing with forms you should also create form for editing an existing post. The editAction will
display this form.

This is pretty straight forward: we already added a link to each post with the PostActions.html partial:

*Resources/Private/Templates/Post/Index.html~:

<ul class="actions">

<f:link.action action="edit" arguments="{post: post}">Edit</£f:1link.action>
</1li>

<f:form action="delete" arguments="{post: post}">
<f:form.submit name="delete" value="Delete" />

(continues on next page)

2.2. Part ll: Getting Started 87

Flow Framework, Release 7.0.x

800 My Blog 7
i

Created a new post.

This is a new post Edit Delete

Published on 2015-07-30 by Bastian Waidelich

Example Post Edit Delete

Published on 2015-07-30 by John Doe

Create a new post

Powered by Flow

Fig. 17: A new post has been created

88 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

</f:form>
</1li>

This renders an “Edit” link that points to the editAction of the PostController. Below is a little form with just one
button that triggers the deleteAction ().

Note: The reason why the deleteAction () is invoked via a form instead of a link is because Flow follows the
HTTP 1.1 specification that suggests that called “safe request methods” (usually GET or HEAD requests) should not
change the server state. See Part IIl - Validation for more details. The editAction () just displays the Post edit
form, so it can be called via GET requests.

Adjust the template Templates/Post/Edit.html and insert the following HTML code:

Resources/Private/Templates/Post/Edit.html:

<f:layout name="Default" />

<f:section name="MainContent">
<h2>Edit post "{post.subject}"</h2>
<f:form action="update" object="{post}" objectName="post">
<label for="post—author">Author</label>
<f:form.textfield property="author" id="post-author" />

<label for="post-subject">Subject</label>
<f:form.textfield property="subject" id="post-subject" />

<label for="post-content">Content</label>
<f:form.textarea property="content" rows="5" cols="30" id="post-content" />

<f:form.submit name="submit" value="Update Post" />
</f:form>
</f:section>

Most of this should already look familiar. However, there is a tiny difference to the new form you created earlier: in
this edit form you added object="{post} " to the <f:form> tag. This attribute binds the variable {post} to
the form and it simplifies the further definition of the form’s elements. Each element — in our case the text box and the
text area — comes with a property attribute declaring the name of the property which is supposed to be displayed
and edited by the respective element.

Because you specified property="author" for the text box, Fluid will fetch the value of the post’s author
property and display it as the default value for the rendered text box. The resulting input tag will also contain the
name "author" due to the property attribute you defined. The id attribute only serves as a target for the 1abel
tag and is not required by Fluid.

What’s missing now is a small adjustment to the PHP code displaying the edit form:

Classes/Acme/Blog/Controller/PostController.php:

J ok k
* Displays the "Edit Post" form
*/

public function editAction (Post

{

&

St

st): void

Sthis->view->assign('post', Spost);

2.2. Part ll: Getting Started 89

Flow Framework, Release 7.0.x

Enough theory, let’s try out the edit form in practice. A click on the edit link of your list of posts should result in a
screen similar to this:

8 .00 My Blog "
i i

My Blog

Edit post "This is a new post”
Author
Bastian Waidelich

Subject
This is a new post

Content
And it was created with a blog built on the Flow Framework.

Update Post

Powered by Flow

Fig. 18: The edit form for a post

When you submit the form you call the updateAction:

Classes/Acme/Blog/Controller/PostController.php:

J ok k
* Updates a post
*/
public function updateAction (Post S$post): wvoid
{
Sthis->postRepository—->update (Spost) ;
Sthis->addFlashMessage ('Updated the post.');
Sthis—->redirect ('index"');

Quite easy as well, isn’t it? The updateAction expects the edited post as its argument and passes it to the repos-
itory’s update method (note that we used the PostRepository!). Before we disclose the secret how this magic
actually works behind the scenes try out if updating the post really works:

920 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

Updated the post.

This is a new post Edit Delete

Fig. 19: The post has been edited

A Closer Look on Updates

Although updating objects is very simple on the user’s side (that’s where you live), it is a bit complex on behalf of the
framework. You may skip this section if you like - but if you dare to take a quick look behind the scenes to get a better
understanding of the mechanism behind the updateActionreadon...

The updateAction expects one argument, namely the edited post. “Edited post” means that this is a Post object
which already contains the values submitted by the edit form.

These modifications will not be persisted automatically. To persist the changes to the post object, call the PostRepos-
itory’s update method. It schedules an object for the dirty check at the end of the request.

If all these details didn’t scare you, you might now ask yourself how Flow could know that the updateAction
expects a modified object and not the original? Great question. And the answer is — literally — hidden in the form
generated by Fluid’s form view helper:

<form action="/acme.blog/post/update" method="post">

<input type="hidden" name="post[__identity]" value="7825fe4b-33d9-0522-a3f2-
—02833£9084ab" />

</form>

Fluid automatically renders a hidden field containing information about the technical identity of the form’s object, if
the object is an original, previously retrieved from a repository.

On receiving a request, the MVC framework checks if a special identity field (such as the above hidden field) is present
and if further properties have been submitted. This results in three different cases:

Table 2: Create, Show, Update detection

Situation Case Consequence

identity missing, properties | New / Create Create a completely new object and set the given proper-
present ties

identity present, properties miss- | Show / Delete / | Retrieve original object with given identifier

ing e

identity present, properties | Edit/ Update Retrieve original object, and set the given properties
present

Because the edit form contained both identity and properties, Flow prepared an instance with the given properties for
our updateAction.

2.2. Part ll: Getting Started 91

Flow Framework, Release 7.0.x

2.2.10 Validation

Hopefully the examples of the previous chapters made you shudder or at least raised some questions. Although it’s
surely nice to have one-liners for actions like create and update we need some more code to validate the incoming
values before they are eventually persisted and the outgoing content before it’s rendered to the browser.

You won’t have to care too much about the latter if you’re using Fluid to render your View because, because it escapes
your data by default. As a result, even if the post subject contains the string <script>alert ("danger") </
script> outputting it via {post.subject} will result in the unaesthetic but harmless &1t; script>
alert ("danger") < /scripté>.

But most applications come with additional rules that apply to the domain model. Maybe you want to make sure that a
post subject must consist of at least 3 and at maximum 50 characters for example. But do you really want these checks
in your action methods? Shouldn’t we rather separate the concerns' of the action methods (show, create, update, ...)
from others like validation, logging and security?

Fortunately Flow’s validation framework doesn’t ask you to add any additional PHP code to your action methods.
Validation has been extracted as a separated concern which does it’s job almost transparently to the developer.

Declaring Validation Rules
When we’re talking about validation, we usually refer to validating models. The rules defining how a model should
be validated can be classified into three types:

» Base Properties — a set of rules defining the minimum requirements on the properties of a model which must
be met before a model may be persisted.

* Base Model — a set of rules or custom validator enforcing the minimum requirements on the combination of
properties of a model which must be met before a model may be persisted.

* Supplemental — a set of rules defining additional requirements on a model for a specific situation, for example
for a certain action method.

Note: Base model and supplemental rules are not covered by this tutorial. Detailed information is available in Part
111 - Validation.

Rules for the base properties are defined directly in the model in form of annotations:

Classes/Acme/Blog/Domain/Model/Post.php:

J ok k

* @Flow\Validate (type="NotEmpty")

* @Flow\Validate (type="StringLength", options={ "minimum"=3, "maximum"=50 })
* @var string

*/

protected S$subject;

VR
* @Flow\Validate (type="NotEmpty")
* @var string
*/

protected Sauthor;

J ok *
* @Flow\Validate (type="NotEmpty")

(continues on next page)

! See also: Separation of Concerns (Wikipedia)

92 Chapter 2. The Definitive Guide

http://en.wikipedia.org/wiki/Separation_of_concerns

Flow Framework, Release 7.0.x

(continued from previous page)

* @ORM\ManyToOne (inversedBy="posts")
* @var Blog
*/

protected Sblog;

The Validate annotations define one or more validation rules which should apply to a property. Multiple rules can
be defined in dedicated lines by further Validate annotations.

Note: Per convention, every validator allows (passes) empty values, i.e. empty strings or null values. This is for
achieving fields which are not mandatory, but if filled in, must satisfy a given validation. Consider an email address
field for example which is not mandatory, but has to match an email pattern as soon as filled in.

If you want to make a field mandatory at all, use the Not Empty validator in addition, like in the example above.

The technical background is the accept sEmptyValues property of the AbstractValidator, being t rue per default.
When writing customized validators, it’s basically possible to set this field to false, however this is not generally
recommended due to the convention that every validator could principally be empty.

Tip: Flow provides a range of built-in validators which can be found in the Flow\Validation\Validator sub
package. The names used in the t ype attributes are just the unqualified class names of these validators.

It is possible and very simple to program custom validators by implementing the Neos\Flow\Validation\
Validator\ValidatorInterface. Such validators must, however, be referred to by their fully qualified class
name (i.e. including the namespace).

Make sure the above validation rules are set in your Post model, click on the Create a new post link below
the list of posts and submit the empty form. If all went fine, you should end up again in the new post form, with the
tiny difference that the text boxes for title and author are now framed in red:

Displaying Validation Errors

The validation rules seem to be in effect but the output could be a bit more meaningful. We’d like to display a list of
error messages for exactly this case when the form has been submitted but contained errors.

Fluid comes with a specialized view helper which allows for iterating over validation errors, the <f :validation.
results> view helper. We’ll need validation results for the create and the update case, so let’s put the View Helper
in a new partial FormErrors:

+*Resources/Private/Partials/FormErrors.htmlx:

<f:validation.results for="{for}">
<f:if condition="{validationResults.flattenedErrors}">
<dl class="errors">
<f:for each="{validationResults.flattenedErrors}" key="propertyName" as=
—"errors">
<dt>
{propertyName}:
</dt>
<dd>
<f:for each="{errors}" as="error">{error}</£f:£for>
</dd>
</f:for>

(continues on next page)

2.2. Part ll: Getting Started 93

Flow Framework, Release 7.0.x

An error occurred while trying to call Acme\Blog\Controller\PostController->createAction()

Create new post

Author
Subject

Content

Publish Post

Fig. 20: Validation errors shown in form

94 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

</d1>
</£:if>
</f:validation.results>

And include that partial to both, the New.html and the Edit . html templates just above the form:

*Resources/Private/Templates/Post/New.html«:

<f:render partial="FormErrors" arguments="{for: 'newPost'}" />
<f:form action="create" objectName="newPost">

and:

+*Resources/Private/Templates/Post/Edit.htmlx*:

<f:render partial="FormErrors" arguments="{for: 'post'}" />
<f:form action="update" object="{post}" objectName="post">

Similar to the <f: for> view helper <f:validation.results> defines a loop iterating over validation errors.
The attribute as is optional and if it’s not specified (like in the above example) as="error" is assumed.

To clearly understand this addition to the template you need to know that errors can be nested: There is a global error
object containing the errors of the different domain objects (such as newP ost) which contain errors for each property
which in turn can be multiple errors per property.

After saving the modified template and submitting the empty form again you should see some more verbose error
messages:

Validating Existing Data

The validation rules are enforced as soon as the GET or POST arguments are mapped to the action’s arguments. But
what if you add new validation rules when there are already persisted entities that might violate these? For example if
you had created a post with a subject of “xy” and added the St ringLength annotation afterwards?

Doing so would prevent you from invoking any of the actions for that particular post. All you will see is an error
message:

Validation failed while trying to call Acme\Blog\Controller\PostController—>
—~showAction () .

So the problem is that Flow tries to validate the $post argument for the action although we don’t need a valid post at
this point. What’s important is that the post submitted to updateAction or createAction is valid, but we don’t
really care about the showAction or editAction which only displays the post or a form.

There’s a very simple remedy to this problem: don’t validate the post. With one additional annotation the whole
mechanism works as expected:

Classes/Acme/Blog/Controller/PostController.php:

J ok k
* Displays a single post
*

* @Flow\IgnoreValidation ("Spost")

(continues on next page)

2.2. Part ll: Getting Started 95

Flow Framework, Release 7.0.x

An error occurred while trying to call Acme\Blog\Controller\PostController->createAction()

Create new post

subject: This property is required.
author: This property is required.
content: This property is required.

Author

Subject

Content

Publish Post

Fig. 21: More verbose validation errors shown in form

96

Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

*/
public function showAction (Post Spost): void
{
Sthis->view->assignMultiple ([
'post' => S$post,
'nextPost' => Sthis->postRepository->findNext ($post),
'previousPost' => Sthis->postRepository->findPrevious ($post),

1)

Now the showAction can be called even though $post is not valid. You probably want to add the same annotation
to the editAction and even the deleteAction so that invalid posts can be fixed or removed.

2.2.11 Routing

Although the basic functions like creating or updating a post work well already, the URIs still have a little blemish.
The index of posts can only be reached by the cumbersome address http://dev.tutorial.local/acme.blog/post and the
URL for editing a post refers to the post’s UUID instead of the human-readable identifier.

Flow’s routing mechanism allows for beautifying these URIs by simple but powerful configuration options.

Post Index Route

Our first task is to simplify accessing the list of posts. For that you need to edit a file called Routes.yaml in the global
Configuration/ directory (located at the same level like the Data and Packages directories). This file already contains
a few routes which we ignore for the time being.

Please insert the following configuration at the top of the file (before the “Welcome’ route) and make sure that you use
spaces exactly like in the example (remember, spaces have a meaning in YAML files and tabs are not allowed):

name: 'Post index'
uriPattern: 'posts'
defaults:
'@package’': 'Acme.Blog'
'@controller': 'Post'
'@action': 'index'
'@format': 'html'

This configuration adds a new route to the list of routes (- creates a new list item). The route becomes active if
a requests matches the pattern defined by the uriPattern. In this example the URI http://dev.tutorial.local/posts
would match.

If the URI matches, the route’s default values for package, controller action and format are set and the request dis-
patcher will choose the right controller accordingly.

Try calling http://dev.tutorial.local/posts now — you should see the list of posts produced by the PostController’s
indexAction.

2.2. Part ll: Getting Started 97

http://dev.tutorial.local/acme.blog/post
http://dev.tutorial.local/posts
http://dev.tutorial.local/posts

Flow Framework, Release 7.0.x

Composite Routes

As you can imagine, you rarely define only one route per package and storing all routes in one file can easily become
confusing. To keep the global Routes.yaml clean you may define sub routes which include - if their own URI pattern
matches - further routes provided by your package.

The Flow sub route configuration for example includes further routes if no earlier routes in Routes . yaml matched
first. Only the URI part contained in the less-than and greater-than signs will be passed to the sub routes:

##
Flow subroutes
#

name: 'Flow'
uriPattern: '<FlowSubroutes>'

defaults:
'@format': 'html'

subRoutes:
'FlowSubroutes':

package: 'Neos.Flow'

Let’s define a similar configuration for the Blog package. Please replace the YAML code you just inserted (the blog
index route) by the following sub route configuration:

##
Blog subroutes

name: 'Blog’
uriPattern: '<BlogSubroutes>'

defaults:
'@package': 'Acme.Blog'
'@format': 'html'
subRoutes:
'BlogSubroutes':

package: 'Acme.Blog'

Note: We use “BlogSubroutes” here as name for the sub routes. You can name this as you like but it has to be
the same in uriPattern and subRoutes.

For this to work you need to create a new Routes.yaml file in the Configuration folder of your Blog package (Pack-
ages/Application/Acme.Blog/Configuration/Routes.yaml) and paste the route you already created:

Configuration/Routes.yaml:

#
Routes configuration for the Blog package
#
name: 'Post index'
uriPattern: 'posts'
defaults:
'@package': 'Acme.Blog'
'@controller': 'Post'

(continues on next page)

98 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

(continued from previous page)

'Qaction': 'index'
'@format': 'html'

Note: As the defaults for @package and @format are already defined in the parent route, you can omit them in
the sub route.

An Action Route

The URI pointing to the newAction is still http://dev.tutorial.local/acme.blog/post/new so let’s beautify the action
URIs as well by inserting a new route before the ‘Blogs’ route:

Configuration/Routes.yaml:

name: 'Post actions'
uriPattern: 'posts/{QRaction}'
defaults:

'@controller': 'Post'

Reload the post index and check out the new URI of the createAction - it’s a bit shorter now:

This is a new post

Create a new ptmﬁt
flow.dev/posts/new

Fig. 22: A nice “create” route

However, the edit link still looks it bit ugly:

http://dev.tutorial.local/acme.blog/post/edit?post$5B__identity%$5D=229e2b23-b6£3-4422—-
—8b7a-efbl196dbc88b

For getting rid of this long identifier we need the help of a new route that can handle the post object.

2.2. Part ll: Getting Started 99

http://dev.tutorial.local/acme.blog/post/new

Flow Framework, Release 7.0.x

Object Route Parts

Our goal is to produce an URI like:

http://dev.tutorial.local/posts/2010/01/18/post—title/edit

and use this as our edit link. That’s done by adding following route at the top of the file:

Configuration/Routes.yaml:

name: 'Single post actions'
uriPattern: 'posts/{post}/{@action}"
defaults:

'@controller': 'Post’
routeParts:

post:

objectType: 'Acme\Blog\Domain\Model\Post'
uriPattern: '{date:Y}/{date:m}/{date:d}/{subject}’

The “Single post actions” route now handles all actions where a post needs to be specified (i.e. show, edit,
update and delete).

Finally, now that you copied and pasted so much code, you should try out the new routing setup ...

More on Routing

The more an application grows, the more complex routing can become and sometimes you’ll wonder which route
Flow eventually chose. One way to get this information is looking at the log file which is by default located in
Data/Logs/System_Development.log:

® 00 mc - [Users/Shared/Sites — tail — 145x8

robsmac:Web robert$ tail -f FLOW3_Development.log

@9-08-14 14:40:30 INFO FLOW3 --- Lounching FLOW3 in Development context. ---

@9-08-14 14:40:35 DEBUG FLOW3 Router route(): Route "Blog :: Blog actions 2" matched the request path "/blogs/fooblog/edit”.
99-08-14 14:40:35 DEBUG FLOW3 Dispatching signal F3\FLOW3\Core\Bootstrap: :emitFinishedNormalRun ...

@9-08-14 14:40:35 DEBUG FLOW3 to slot F3\FLOW3\Core\LockManager: :unlockSite.
@9-98-14 14:48:35 INFO FLOW3 Shutting down ...

Fig. 23: Routing entries in the system log

More information on routing can be found in the The Definitive Guide.

2.2.12 Summary

Next Steps

This is the end of the Getting Started Tutorial. You now have a first impression of what a Flow application looks like
and how the most important modules of Flow work together.

You now have two options for delving further into Flow programming:

* Start completing the missing functionality on your own and while you do, read further parts of the Flow reference
manual

100 Chapter 2. The Definitive Guide

Flow Framework, Release 7.0.x

* Install the finished blog example and explore its code by reading and modifying it
If you can’t wait to see the finished blog all you need to do is:

* Delete your blog package (that is Packages/Application/ACME.Blog/) and then

* Clone the Blog package from github: https://github.com/neos/Acme.Blog

Feedback
The Flow core team is curious about getting your feedback! If you have any questions, are stuck at some point or just
want to let us know how you liked the tutorial please join us at Slack or open a thread on our forum.

And if you love Flow like we do, spread the word in your blog or through your favorite social network . ..

2.3 Part lll: Manual

2.3.1 Architectural Overview

Flow is a PHP-based application framework. It is especially well-suited for enterprise-grade applications and explicitly
supports Domain-Driven Design, a powerful software design philosophy. Convention over configuration, Test-Driven
Development, Continuous Integration and an easy-to-read source code are other important principles we follow for
the development of Flow.

Although we created Flow as the foundation for the Neos Content Management System, its approach is general enough
to be useful as a basis for any other PHP application. We’re happy to share the Flow framework with the whole PHP
community and are looking forward to the hundreds of new features and enhancements contributed as packages by
other enthusiastic developers.

This reference describes all features of Flow and provides you with in-depth information. If you’d like to get a feeling
for Flow and get started quickly, we suggest that you try out our Getting Started tutorial first.

System Parts

The Flow framework is composed of the following submodules:

The Flow Bootstrap takes care of configuring and initializing the whole framework.

The Package Manager allows you to download, install, configure and uninstall packages.

The ObjectManagement is in charge of building, caching and combining objects.

The Configuration framework reads and cascades various kinds of configuration from different sources and
provides access to it.

The ResourceManagement module contains functions for publishing, caching, securing and retrieving resources.

The HTTP component is a standards-compliant implementation of a number of RFCs around HTTP, Cookies,
content negotiation and more. It is based on the PHP-FIG PSR-15 and PSR-7 specifications.

The MVC framework takes care of requests and responses and provides you with a powerful, easy-to use Model-
View-Controller implementation.

The Cli module provides a very easy way to implement CLI commands using Flow, including built-in help based
on code documentation.

The Cache framework provides different kinds of caches with can be combined with a selection of cache back-
ends.

2.3. Part lll: Manual 101

https://github.com/neos/Acme.Blog
http://slack.neos.io/
https://discuss.neos.io/

Flow Framework, Release 7.0.x

* The Error module handles errors and exceptions and provides utility classes for this purpose.

* The Log module provides simple but powerful means to log any kind of event or signal into different types of
backends.

* The Signal Slot module implements the event-driven concept of signals and slots through AOP aspects.

* The Validation module provides a validation and filtering framework with built-in rules as well as support for
custom validation of any object.

* The Property module implements the concept of property editors and is used for setting and retrieving object
properties.

* The Reflection API complements PHP’s built-in reflection support by advanced annotation handling and a
cached reflection service.

* The AOP framework enables you to use the powerful techniques of Aspect Oriented Programming.

* The Persistence module allows you to transparently persist your objects following principles of Domain Driven
Design.

* The Security framework enforces security policies and provides an API for managing those.
* The Session framework takes care of session handling and storing session information in different backends

* The 118n service manages languages and other regional set