

Flow 5.1 Documentation

Flow is a free PHP framework licensed under the MIT license, developed to power the enterprise Neos CMS.

This version of the documentation covering Flow 5.1.x-dev has been rendered at: Dec 02, 2020

Note

We’d love to get your feedback on this documentation! Please share
your thoughts in our forum [https://discuss.neos.io], or the #flow-general channel
in the Neos Project’s Slack [https://slack.neos.io].

Help is always greatly appreciated, read Contributing to Flow to find out how
you can improve Flow.

Quickstart

Get a first overview and a working example within 15 minutes: Quickstart

The Definitive Guide

The Hitchhiker’s Guide to Flow and comprehensive almanac:

	The Definitive Guide

	Part I: Introduction and Fundamentals

	Part II: Getting Started

	Part III: Manual

	Part IV: Deployment and Administration (to be written)

	Part V: Appendixes

	Contributors

Publication Style Guide

A style guide giving advice on how to write for the Neos project:

	Publications Style Guide

	About this Guide

	Style and Usage

	Font conventions

Table of Contents

	Quickstart

	The Definitive Guide
	Part I: Introduction and Fundamentals
	Introduction

	Object-Oriented Programming

	Essential Design Patterns

	Domain-Driven Design

	Part II: Getting Started
	Introduction

	Requirements

	Installation

	Configuration

	Modeling

	Kickstart

	Model and Repository

	Controller

	View

	Validation

	Routing

	Summary

	Part III: Manual
	Architectural Overview

	Bootstrapping

	Package Management

	Configuration

	Object Framework

	Persistence

	HTTP Foundation

	Model View Controller

	Templating

	Validation

	Property Mapping

	Resource Management

	Routing

	Cache Framework

	Session Handling

	Command Line

	Aspect-Oriented Programming

	Security

	Internationalization & Localization Framework

	Error and Exception Handling

	Logging and Debugging (to be written)

	Signals and Slots

	Reflection

	Eel

	File Monitoring (to be written)

	Testing (to be written)

	Utility Functions

	Part IV: Deployment and Administration (to be written)

	Part V: Appendixes
	Flow Annotation Reference

	Flow Command Reference

	Contributing to Flow

	FluidAdaptor ViewHelper Reference

	Predefined Constants Reference

	Flow Signals Reference

	TYPO3 Fluid ViewHelper Reference

	Flow TypeConverter Reference

	Flow Validator Reference

	Coding Guidelines
	PHP Coding Guidelines & Best Practices

	JavaScript Coding Guidelines

	Release Notes
	Flow 5.0

	Upgrade Instructions

	What has changed

	Flow 4.3

	Upgrade Instructions

	Flow 4.2

	Flow 4.1

	Upgrade Instructions

	Flow 4.0

	Upgrade Instructions

	ChangeLogs
	5.1.9 (2019-06-14)

	5.1.8 (2019-03-25)

	5.1.7 (2019-02-10)

	5.1.6 (2019-01-10)

	5.1.5 (2018-11-21)

	5.1.4 (2018-11-12)

	5.1.3 (2018-10-29)

	5.1.2 (2018-10-02)

	5.1.18 (2020-05-04)

	5.1.17 (2019-12-13)

	5.1.16 (2019-11-06)

	5.1.15 (2019-10-25)

	5.1.14 (2019-10-14)

	5.1.13 (2019-09-24)

	5.1.12 (2019-09-05)

	5.1.11 (2019-09-02)

	5.1.10 (2019-06-17)

	5.1.1 (2018-08-30)

	5.1.0 (2018-08-29)

	Contributors

	Publications Style Guide
	About this Guide

	Style and Usage

	Font conventions

Quickstart

What Is in This Guide?

This guided tour gets you started with Flow by giving step-by-step instructions for the
development of a small sample application. It will give you a first overview of the basic
concepts and leaves the details to the full manual and more specific guides.

Be warned that your head will be buzzed with several new concepts. But after you made your
way through the whitewater you’ll surely ride the wave in no time!

What Is Flow?

Flow is a PHP-based application framework which is especially well-suited for
enterprise-grade applications. Its architecture and conventions keep your head clear and
let you focus on the essential parts of your application. Although stability, security and
performance are all important elements of the framework’s design, the fluent user
experience is the one underlying theme which rules them all.

As a matter of fact, Flow is easier to learn for PHP beginners than for veterans. It
takes a while to leave behind old paradigms and open up for new approaches. That being
said, developing with Flow is very intuitive and the basic principles can be learned
within a few hours. Even if you don’t decide to use Flow for your next project, there are
a lot of universal development techniques you can learn.

Tip

This tutorial goes best with a Caffè Latte or, if it’s afternoon or late night
already, with a few shots of Espresso …

Installing Flow

Setting up Flow is pretty straight-forward. As a minimum requirement you will need:

	A web server (we recommend Apache with the mod_rewrite module enabled)

	PHP 7.1.0 or later

	A database supported by Doctrine DBAL, such as MySQL

	Command line access

Install Composer by following the installation instructions [http://getcomposer.org/download/]
which boils down to this in the simplest case:

curl -s https://getcomposer.org/installer | php

Note

Feel free to install the composer command to a global location, by moving
the phar archive to e.g. /usr/local/bin/composer and making it executable.
The following documentation assumes composer is installed globally.

Tip

Running composer selfupdate from time to time keeps it up to date
and can prevent errors caused by composer not understanding e.g. new
syntax in manifest files.

Then use Composer in a directory which will be accessible by your web server to download
and install all packages of the Flow Base Distribution. The following command will
clone the latest version, include development dependencies and keep git metadata for future use:

composer create-project --keep-vcs neos/flow-base-distribution Quickstart

You will end up with a directory structure like this:

htdocs/ <-- depending on your web server
 Quickstart/
 Build/
 Configuration/
 Settings.yaml.example
 ...
 Packages/
 Framework/
 Neos.Flow/
 ...
 Web/ <-- your virtual host root will point to this
 .htaccess
 index.php
 flow
 flow.bat

Setting File Permissions

You will access Flow from both, the command line and the web browser. In order to provide
write access to certain directories for both, you will need to set the file permissions
accordingly. But don’t worry, this is simply done by changing to the Flow base directory
(Quickstart in the above example) and calling the following command:

command line:

./flow core:setfilepermissions john www-data www-data

Please replace john by your own username. The second argument is supposed to be the
username of your web server and the last one specifies the web server’s group. For most
installations on Mac OS X this would be both _www instead of www-data.

It can and usually will happen that Flow is launched from the command line by a different
user. All users who plan using Flow from the command line need to join the web server’s
group. On a Linux machine this can be done by typing:

command line:

sudo usermod -a -G www-data john

On a Mac you can add a user to the web group with the following command:

command line:

sudo dscl . -append /Groups/_www GroupMembership johndoe

You will have to exit your shell / terminal window and open it again for the
new group membership to take effect.

Note

Setting file permissions is not necessary and not possible on Windows machines.
For Apache to be able to create symlinks, you need to use Windows Vista (or
newer) and Apache needs to be started with Administrator privileges.

Setting up a virtual host

It is very much recommended to create a virtual host configuration for Apache
that uses the Web folder as the document root. This has a number of reasons:

	it makes for nicer URLs

	it is more secure because that way access to anything else through the
web is not possible

The latter point is really important!

For the rest of this tutorial we assume you have created a virtual host
that can be reached through http://quickstart/.

Testing the Installation

[image: The Flow Welcome Screen]
The Flow Welcome Screen

If your system is configured correctly you should now be able to access the Welcome
screen:

http://quickstart/

If you did not follow our advice to create a virtual host, point your browser to the
Web directory of your Flow installation throughout this tutorial, for example:

http://localhost/Quickstart/Web/

The result should look similar to the screen you see in the screenshot. If something went
wrong, it usually can be blamed on a misconfigured web server or insufficient file
permissions.

Note

If all you get is a 404, you might need to edit the .htaccess file in the
Web folder to adjust the RewriteBase directive as needed.

Note

Depending on your environment (especially on Windows systems) you might need to set the
path to the PHP binary in Configuration/Settings.yaml. If you copied the provided
example Settings you only need to uncomment the corresponding lines and adjust the path.

Tip

There are some friendly ghosts in our Slack channel [https://neos-project.slack.com/messages/flow-general/] and in the Discuss forum [https://discuss.neos.io]
– they will gladly help you out if you describe your problem as precisely as possible.

Some Note About Speed

The first request will usually take quite a while because Flow does a lot of heavy
lifting in the background. It analyzes code, builds up reflection caches and applies
security rules. During all the following examples you will work in the so called
Development Context. It makes development very convenient but feels a lot slower than
the Production Context – the one you will obviously use for the application in
production.

Kickstarting a Package

The actual code of an application and its resources – such as images, style sheets and
templates – are bundled into packages. Each package is identified by a globally unique
package key, which consists of your company or domain name (the so called vendor name)
and further parts you choose for naming the package.

Let’s create a Demo package for our fictive company Acme:

$./flow kickstart:package Acme.Demo
Created .../Acme.Demo/Classes/Acme/Demo/Controller/StandardController.php
Created .../Acme.Demo/Resources/Private/Layouts/Default.html
Created .../Acme.Demo/Resources/Private/Templates/Standard/Index.html

The Kickstarter will create a new package directory in Packages/Application/ resulting
in the following structure:

Packages/
 Application/
 Acme.Demo/
 Classes/Acme/Demo/
 Configuration/
 Documentation/
 Meta/
 Resources/
 Tests/

The kickstart:package command also generates a sample controller which displays
some content. You should be able to access it through the following URL:

http://quickstart/Acme.Demo

Tip

In case your web server lacks mod_rewrite, it could be that you need to call this to access
the controller:

http://quickstart/index.php/Acme.Demo

If this the case, keep in mind to add index.php to the following URLs in this
Quickstart tutorial.

Hello World

Let’s use the StandardController for some more experiments. After opening the respective
class file in Packages/Application/Acme.Demo/Classes/Acme/Demo/Controller/ you should find the
method indexAction() which is responsible for the output you’ve just seen in your web
browser:

/**
 * @return void
 */
public function indexAction() {
 $this->view->assign('foos', array(
 'bar', 'baz'
));
}

Accepting some kind of user input is essential for most applications and Flow does a
great deal of processing and sanitizing any incoming data. Try it out – create a new
action method like this one:

/**
 * This action outputs a custom greeting
 *
 * @param string $name your name
 * @return string custom greeting
 */
public function helloAction($name) {
 return 'Hello ' . $name . '!';
}

Important

For the sake of simplicity the above example does not contain any input/output sanitation.
If your controller action directly returns something, make sure to filter the data!

Tip

You should always properly document all your functions and class properties. This
will not only help other developers to understand your code, but is also essential for
Flow to work properly.

Now test the new action by passing it a name like in the following URL:

http://quickstart/Acme.Demo/Standard/hello?name=Robert

The path segments of this URL tell Flow to which controller and action the web request
should be dispatched to. In our example the parts are:

	Acme.Demo (package key)

	Standard (controller name)

	hello (action name)

If everything went fine, you should be greeted by a friendly “Hello Robert!” – if that’s
the name you passed to the action. Also try leaving out the name parameter in the URL –
Flow will complain about a missing argument.

Database Setup

One important design goal for Flow was to let a developer focus on the business logic and
work in a truly object-oriented fashion. While you develop a Flow application, you will
hardly note that content is actually stored in a database. Your code won’t contain any
SQL query and you don’t have to deal with setting up table structures.

But before you can store anything, you still need to set up a database and tell Flow how
to access it. The credentials and driver options need to be specified in the global
Flow settings.

After you have created an empty database and set up a user with sufficient access
rights, copy the file Configuration/Settings.yaml.example to
Configuration/Settings.yaml. Open and adjust the file to your needs – for a common MySQL
setup, it would look similar to this:

Neos:
 Flow:
 persistence:
 backendOptions:
 driver: 'pdo_mysql'
 dbname: 'quickstart' # adjust to your database name
 user: 'root' # adjust to your database user
 password: 'password' # adjust to your database password
 host: '127.0.0.1' # adjust to your database host

Note

If you are not familiar with the YAML format yet, there are two things you should
know at least:

	Indentation has a meaning: by different levels of indentation, a structure is
defined.

	Spaces, not tabs: you must indent with exactly 2 spaces per level, don’t use tabs.

If you configured everything correctly, the following command will create the initial
table structure needed by Flow:

$./flow doctrine:migrate
Migrating up to 2011xxxxx00 from 0

++ migrating 2011xxxxx00
 -> CREATE TABLE flow_resource_resourcepointer (hash VARCHAR(255) NOT NULL, PRIMARY
 -> CREATE TABLE flow_resource_resource (persistence_object_identifier VARCHAR(40)
...
++ finished in 0.76

Storing Objects

Let’s take a shortcut here – instead of programming your own controller, model and view
just generate some example with the kickstarter:

$./flow kickstart:actioncontroller --generate-actions --generate-related Acme.Demo CoffeeBean
Created .../Acme.Demo/Classes/Acme/Demo/Domain/Model/CoffeeBean.php
Created .../Acme.Demo/Tests/Unit/Domain/Model/CoffeeBeanTest.php
Created .../Acme.Demo/Classes/Acme/Demo/Domain/Repository/CoffeeBeanRepository.php
Created .../Acme.Demo/Classes/Acme/Demo/Controller/CoffeeBeanController.php
Omitted .../Acme.Demo/Resources/Private/Layouts/Default.html
Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/Index.html
Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/New.html
Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/Edit.html
Created .../Acme.Demo/Resources/Private/Templates/CoffeeBean/Show.html
As new models were generated, do not forget to update the database schema with the respective doctrine:* commands.

Whenever a model is created or modified, the database structure needs to be adjusted to
fit the new PHP code. This is something you should do consciously because existing data
could be altered or removed – therefore this step isn’t taken automatically by Flow.

The kickstarter created a new model representing a coffee bean. For promoting the new
structure to the database, just run the doctrine:update command:

$./flow doctrine:update
Executed a database schema update.

Tip

In a real project you should avoid the doctrine:update command and instead
work with migrations. See the “Persistence” section of the
The Definitive Guide for more details

A quick glance at the table structure (using your preferred database management tool) will
reveal that a new table for coffee beans has been created.

The controller rendered by the kickstarter provides some very basic functionality for
creating, editing and deleting coffee beans. Try it out by accessing this URL:

http://quickstart/Acme.Demo/CoffeeBean

Create a few coffee beans, edit and delete them and take a look at the database tables
if you can’t resist …

[image: List and create coffee beans]
List and create coffee beans

A Closer Look at the Example

In case you have been programming PHP for a while, you might be used to tackle many
low-level tasks yourself: Rendering HTML forms, retrieving and validating input from the
superglobals $_GET, $_POST and $_FILES, validating the input, creating SQL
queries for storing the input in the database, checking for Cross-Site Scripting,
Cross-Site Request Forgery, SQL-Injection and much more.

With this background, the following complete code listing powering the previous example
may seem a bit odd, if not magical to you. Take a close look at each of the methods –
can you imagine what they do?

use Acme\Demo\Domain\Model\CoffeeBean;
use Acme\Demo\Domain\Repository\CoffeeBeanRepository;

class CoffeeBeanController extends ActionController {

 /**
 * @Flow\Inject
 * @var CoffeeBeanRepository
 */
 protected $coffeeBeanRepository;

 /**
 * @return void
 */
 public function indexAction() {
 $this->view->assign('coffeeBeans', $this->coffeeBeanRepository->findAll());
 }

 /**
 * @param CoffeeBean $coffeeBean
 * @return void
 */
 public function showAction(CoffeeBean $coffeeBean) {
 $this->view->assign('coffeeBean', $coffeeBean);
 }

 /**
 * @return void
 */
 public function newAction() {
 }

 /**
 * @param CoffeeBean $newCoffeeBean
 * @return void
 */
 public function createAction(CoffeeBean $newCoffeeBean) {
 $this->coffeeBeanRepository->add($newCoffeeBean);
 $this->addFlashMessage('Created a new coffee bean.');
 $this->redirect('index');
 }

 /**
 * @param CoffeeBean $coffeeBean
 * @return void
 */
 public function editAction(CoffeeBean $coffeeBean) {
 $this->view->assign('coffeeBean', $coffeeBean);
 }

 /**
 * @param CoffeeBean $coffeeBean
 * @return void
 */
 public function updateAction(CoffeeBean $coffeeBean) {
 $this->coffeeBeanRepository->update($coffeeBean);
 $this->addFlashMessage('Updated the coffee bean.');
 $this->redirect('index');
 }

 /**
 * @param CoffeeBean $coffeeBean
 * @return void
 */
 public function deleteAction(CoffeeBean $coffeeBean) {
 $this->coffeeBeanRepository->remove($coffeeBean);
 $this->addFlashMessage('Deleted a coffee bean.');
 $this->redirect('index');
 }

}

You will learn all the nitty-gritty details of persistence (that is storing and
retrieving objects in a database), Model-View Controller and validation in
The Definitive Guide. With some hints
for each of the actions of this controller though, you’ll get some first impression of
how basic operations like creating or deleting objects are handled in Flow.

Without further ado let’s take a closer look at some of the actions:

indexAction

The indexAction displays a list of coffee beans. All it does is fetching
all existing coffee beans from a repository and then handing them over to the template
for rendering.

The CoffeeBeanRepository takes care of storing and finding stored coffee beans. The
simplest operation it provides is the findAll() method which returns a list of all
existing CoffeeBean objects.

For consistency reasons only one instance of the CoffeeBeanRepository class may
exist at a time. Otherwise there would be multiple repositories storing CoffeeBean
objects – and which one would you then ask for retrieving a specific coffee bean back from
the database? The CoffeeBeanRepository is therefore tagged with an annotation
stating that only a single instance may exist at a time:

/**
 * @Flow\Scope("singleton")
 */
class CoffeeBeanRepository extends Repository {

Because PHP doesn’t support the concept of annotations natively, we are using doc
comments which are parsed by an annotation parser in Flow.

Flow’s object management detects the Scope annotation and takes care of
all the details. All you need to do in order to get the right CoffeeBeanRepository
instance is telling Flow to inject it into a class property you defined:

/**
 * @Flow\Inject
 * @var CoffeeBeanRepository
 */
protected $coffeeBeanRepository;

The Inject annotation tells Flow to set the $coffeeBeanRepository right
after the CoffeeBeanController class has been instantiated.

Tip

This feature is called Dependency Injection and is an important feature of Flow.
Although it is blindingly easy to use, you’ll want to read some more about it later
in the related section of
the main manual.

Flow adheres to the Model-View-Controller pattern – that’s why the actual output is not
generated by the action method itself. This task is delegated to the view, and that is,
by default, a Fluid template (Fluid is the name of the templating engine Flow uses).
Following the conventions, there should be a directory structure in the
Resources/Private/Templates/ folder of a package which corresponds to the
controllers and actions. For the index action of the CoffeeBeanController the
template Resources/Private/Templates/CoffeeBean/Index.html will be used for
rendering.

Templates can display content which has been assigned to template variables. The
placeholder {name} will be replaced by the actual value of the template variable
name once the template is rendered. Likewise {coffeeBean.name} is substituted
by the value of the coffee bean’s name attribute.

The coffee beans retrieved from the repository are assigned to the template variable
coffeeBeans. The template in turn uses a for-each loop for rendering a list of coffee
beans:

 <f:for each="{coffeeBeans}" as="coffeeBean">

 {coffeeBean.name}

 </f:for>

showAction

The showAction displays a single coffee bean:

/**
 * @param CoffeeBean $coffeeBean The coffee bean to show
 * @return void
 */
public function showAction(CoffeeBean $coffeeBean) {
 $this->view->assign('coffeeBean', $coffeeBean);
}

The corresponding template for this action is stored in this file:

Acme.Demo/Resources/Private/Templates/CoffeeBean/Show.html

This template produces a simple representation of the coffeeBean object.
Similar to the indexAction the coffee bean object is assigned to a Fluid variable:

$this->view->assign('coffeeBean', $coffeeBean);

The showAction method requires a CoffeeBean object as its method argument.
But we need to look into the template of the indexAction again to understand how
coffee beans are actually passed to the showAction.

In the list of coffee beans, rendered by the indexAction, each entry links to the
corresponding showAction. The links are rendered by a so-called view helper in the
Fluid template Index.html:

<f:link.action action="show" arguments="{coffeeBean: coffeeBean}">…</f:link.action>

The interesting part is the {coffeeBean: coffeeBean} argument assignment:
It makes sure that the CoffeeBean object, stored in the coffeeBean
template variable, will be passed to the showAction through a GET parameter.

Of course you cannot just put a PHP object like the coffee bean into a URL. That’s why
the view helper will render an address like the following:

http://quickstart/acme.demo/coffeebean/show?
 coffeeBean%5B__identity%5D=910c2440-ea61-49a2-a68c-ee108a6ee429

Instead of the real PHP object, its Universally Unique Identifier (UUID) was included as
a GET parameter.

Note

That certainly is not a beautiful URL for a coffee bean – but you’ll learn how to
create nice ones in the main manual.

Before the showAction method is actually called, Flow will analyze the GET and POST
parameters of the incoming HTTP request and convert identifiers into real objects
again. By its UUID the coffee bean is retrieved from the CoffeeBeanRepository and
eventually passed to the action method:

public function showAction(CoffeeBean $coffeeBean) {

newAction

The newAction contains no PHP code – all it does is displaying the corresponding
Fluid template which renders a form.

createAction

The createAction is called when a form displayed by the newAction is submitted.
Like the showAction it expects a CoffeeBean as its argument:

/**
 * @param \Acme\Demo\Domain\Model\CoffeeBean $newCoffeeBean
 * @return void
 */
public function createAction(CoffeeBean $newCoffeeBean) {
 $this->coffeeBeanRepository->add($newCoffeeBean);
 $this->addFlashMessage('Created a new coffee bean.');
 $this->redirect('index');
}

This time the argument contains not an existing coffee bean but a new one. Flow knows
that the expected type is CoffeeBean (by the type hint in the method and the param annotation)
and thus tries to convert the POST data sent by the form into a new CoffeeBean object.
All you need to do is adding it to the Coffee Bean Repository.

editAction

The purpose of the editAction is to render a form pretty much like that one shown by
the newAction. But instead of empty fields, this form contains all the data from an
existing coffee bean, including a hidden field with the coffee bean’s UUID.

The edit template uses Fluid’s form view helper for rendering the form. The important bit
for the edit form is the form object assignment:

<f:form action="update" object="{coffeeBean}" objectName="coffeeBean">
 ...
</f:form>

The object="{coffeeBean}" attribute assignment tells the view helper to use the
coffeeBean template variable as its subject. The individual form elements, such
as the text box, can now refer to the coffee bean object properties:

<f:form.textfield property="name" id="name" />

On submitting the form, the user will be redirected to the updateAction.

updateAction

The updateAction receives the modified coffee bean through its $coffeeBean
argument:

/**
 * @param \Acme\Demo\Domain\Model\CoffeeBean $coffeeBean
 * @return void
 */
public function updateAction(CoffeeBean $coffeeBean) {
 $this->coffeeBeanRepository->update($coffeeBean);
 $this->addFlashMessage('Updated the coffee bean.');
 $this->redirect('index');
}

Although this method looks quite similar to the createAction, there is an important
difference you should be aware of: The parameter passed to the updateAction
is an already existing (that is, already persisted) coffee bean object with the
modifications submitted by the user already applied.

Any modifications to the CoffeBean object will be lost at the end of the request
unless you tell Flow explicitly to apply the changes:

$this->coffeeBeanRepository->update($coffeeBean);

This allows for a very efficient dirty checking and is a safety measure - as it leaves
control over the changes in your hands.

Speaking about safety measures: it’s important to know that Flow supports the notion
of “safe request methods”. According to the HTTP 1.1 specification, GET and HEAD
requests should not modify data on the sever side. Since we consider this a good
principle, Flow will not persist any changes automatically if the request method
is “safe”. So … don’t use regular links for deleting your coffee beans - send
a POST or DELETE request instead.

Next Steps

Congratulations! You already learned the most important concepts of Flow development.

Certainly this tutorial will have raised more questions than it answered. Some of
these concepts – and many more you will learn – take some time to get used to.
The best advice I can give you is to expect things to be rather simple and
not look out for the complicated solution (you know, the not to see the wood for
the trees thing …).

Next you should experiment a bit with Flow on your own. After you’ve collected
even more questions, I suggest reading the
Getting Started Tutorial.

At the time of this writing, The Definitive Guide is not yet complete and still
contains a few rough parts. Also the Getting Started Tutorial needs some love
and restructuring. Still, it already may be a valuable source for further
information and I recommend reading it.

Get in touch with the growing Flow community and make sure to share your ideas
about how we can improve Flow and its documentation:

	Slack channel [https://neos-project.slack.com/messages/flow-general/]

	Discuss forum [https://discuss.neos.io]

I am sure that, if you’re a passionate developer, you will love Flow – because it was
made with you, the developer, in mind.

Happy Flow Experience!

Robert on behalf of the Neos team

The Definitive Guide

	Part I: Introduction and Fundamentals
	Introduction

	Object-Oriented Programming

	Essential Design Patterns

	Domain-Driven Design

	Part II: Getting Started
	Introduction

	Requirements

	Installation

	Configuration

	Modeling

	Kickstart

	Model and Repository

	Controller

	View

	Validation

	Routing

	Summary

	Part III: Manual
	Architectural Overview

	Bootstrapping

	Package Management

	Configuration

	Object Framework

	Persistence

	HTTP Foundation

	Model View Controller

	Templating

	Validation

	Property Mapping

	Resource Management

	Routing

	Cache Framework

	Session Handling

	Command Line

	Aspect-Oriented Programming

	Security

	Internationalization & Localization Framework

	Error and Exception Handling

	Logging and Debugging (to be written)

	Signals and Slots

	Reflection

	Eel

	File Monitoring (to be written)

	Testing (to be written)

	Utility Functions

	Part IV: Deployment and Administration (to be written)

	Part V: Appendixes
	Flow Annotation Reference

	Flow Command Reference

	Contributing to Flow

	FluidAdaptor ViewHelper Reference

	Predefined Constants Reference

	Flow Signals Reference

	TYPO3 Fluid ViewHelper Reference

	Flow TypeConverter Reference

	Flow Validator Reference

	Coding Guidelines
	PHP Coding Guidelines & Best Practices

	JavaScript Coding Guidelines

	Release Notes
	Flow 5.0

	Upgrade Instructions

	What has changed

	Flow 4.3

	Upgrade Instructions

	Flow 4.2

	Flow 4.1

	Upgrade Instructions

	Flow 4.0

	Upgrade Instructions

	ChangeLogs
	5.1.9 (2019-06-14)

	5.1.8 (2019-03-25)

	5.1.7 (2019-02-10)

	5.1.6 (2019-01-10)

	5.1.5 (2018-11-21)

	5.1.4 (2018-11-12)

	5.1.3 (2018-10-29)

	5.1.2 (2018-10-02)

	5.1.18 (2020-05-04)

	5.1.17 (2019-12-13)

	5.1.16 (2019-11-06)

	5.1.15 (2019-10-25)

	5.1.14 (2019-10-14)

	5.1.13 (2019-09-24)

	5.1.12 (2019-09-05)

	5.1.11 (2019-09-02)

	5.1.10 (2019-06-17)

	5.1.1 (2018-08-30)

	5.1.0 (2018-08-29)

	Contributors

Part I: Introduction and Fundamentals

	Introduction

	Object-Oriented Programming

	Essential Design Patterns

	Domain-Driven Design

Introduction

What is Flow?

Flow is a web application platform enabling developers to create excellent web
solutions. It gives you fast results. It is a reliable foundation for complex
applications. And it is backed by one of the biggest PHP communities.

The Epic Forward

The Definitive Guide is meant to be a technical resource for documentation of
both Flow usage as well as the theories, patterns and practices to be used in
effective Flow development. While the community and the authors of this guide
will remain objective when presenting concepts, the information found herein
may be strongly biased both positively and negatively for and/or against
other known software development methods and practices. While the practices
adopted in this guide are not the only ones possible, nor necessarily the right
ones for all projects, they are the generally accepted “Best Practices” that
surround the design decisions and direction that have been taken by Flow and
its contributors to date.

The fanatical adoption of the processes, procedures and methodologies as
outlined in the guide will enabled you to work faster, smarter and produce the
best possible results when working within the Flow framework. Flow was
created to complete a missing piece not available to the PHP developer
community. Many of the comparable systems found in various other languages are
based on proprietary technologies or based on languages that require additional
layers or systems to build and run applications. A primary reason for this was
that due to some initial shortcomings of earlier versions of PHP, it was not
accepted as an “Enterprise” language as opposed to a .NET or Java.

With the emergence of PHP 5.3 and the feature set it has brought with it, a
better ecosystem of PHP frameworks is now possible. Flow aims to implement a
set of software design and development principles that have been proven to
produce organized, highly extensible applications which can evolve over time
with the demands and changes of their domain.

Parts of The Guide

Part I: Introduction and Fundamentals

In this section, you will get an overview of the underlying patterns and
practices that are implemented into Flow at its core. After reading this
section, you should have a concise and informed understanding of theories and
methodologies that are involved in building a Flow application using
“Best Practices”.

Part II: Getting Started

In Getting Started, you will learn how to get a Flow application setup and
ready to go. You will also be introduced to the basic building blocks for a
Flow application and its packages.

Part III: Manual

As is the case with any manual, this section will focus on how to use the
various pieces and mechanisms found within Flow. This will include descriptions
of what each component does and example code of how to use or implement it into
your application.

Part IV: Deployment and Administration

Learning to build an application based on Flow is one thing, but equally
important is understanding how to deploy your application into the wild, and
then how to maintain and support it once it’s live. The guide has dedicated an
entire section to ensuring you know the ins and outs of publishing and
maintaining an application built on Flow.

Part V: Appendixes

Any framework is only as good as its ability to communicate clearly on the
frameworks intent and design to its community. While a ubiquitous language
around design patterns helps, the appendixes section aim to make getting to
specific documentation and topic references more efficient. This section is much
more effective when used after having read through the guide, acting as a quick
reference for previously learned concepts.

Object-Oriented Programming

Object-oriented programming is a Programming Paradigm, applied in Flow and
the Packages built on it. In this section we will give an overview of the
basic concepts of Object Orientation.

Programs have a certain purpose, which is - generally speaking - to solve a
problem. “Problem” does not necessarily mean error or defect but rather an
actual task. This Problem usually has a concrete counterpart in real life.

A Program could for example take care of the task of booking a cruise in the
Indian Ocean. If so we obviously have a problem (a programmer that has been
working to much and finally decided to go on vacation) and a program, promising
recuperation by booking a coach on one of the luxury liners for him and
his wife.

Object Orientation assumes that a concrete problem is to be solved by a
program, and a concrete problem is caused by real objects. Therefore focus is
on the object. This can be abstract of course: it will not be something as
concrete as a car or a ship all the time, but can also be a reservation,
an account or a graphical symbol.

objects are “containers” for data and corresponding functionality. The data of
an object is stored in its Properties. The functionality is provided by
Methods, which can for example alter the properties of the object.
In regard to the cruise liner we can say, that it has a certain amount of
coaches, a length and width and a maximum speed. Further it has methods to
start the motor (and hopefully to stop it again also), change the direction as
well as to increase thrust, for you can reach your holiday destination
a bit faster.

Why Object Orientation after all?

Surely some users will ask themselves why they should develop object oriented
in the first place. Why not (just like until now) keep on developing
procedural, thus stringing together functions? Because procedural programming
has some severe disadvantages:

	Properties and methods belonging together with regard to content can not be united. This
methodology, called Encapsulation in Object Orientation, is necessary, if only
because of clear arrangement.

	It is rather difficult to re-use code

	All properties can be altered everywhere throughout the code. This leads to hard-to-find
errors.

	Procedural code gets confusing easily. This is called Spaghetti code.

Furthermore Object Orientation mirrors the real world: Real objects exist, and
they all have properties and (most of them) methods. This fact is now
represented in programming.

In the following we’ll talk about the object ship. We’ll invoke this object,
stock it with coaches, a motor and other useful stuff. Furthermore, there will
be functions, moving the ship, thus turning the motor on and off. Later we’ll
even create a luxury liner based on the general ship and equip it with a golf
simulator and satellite TV.

On the following pages, we’ll try to be as graphic as possible (but still
semantically correct) to familiarize you with object orientation. There is a
specific reason: The more you can identify with the object and its methods, the
more open you’ll be for the theory behind Object Oriented Programming.
Both is necessary for successful programming – even though you’ll often not be
able to imagine the objects you’ll later work with as clearly as in
our examples.

Classes and Objects

Let’s now take a step back and imagine there’d be a blueprint for ships
in general. We now focus not the ship but this blueprint. It is called
class, in this case it is the class Ship. In PHP this is written as
follows;

PHP Code:

<?php

class Ship {

...

}

?>

Note

In this piece of code we kept noting the necessary PHP tags at the
beginning and end. We will spare them in the following examples to make the
listings a bit shorter.

The key word class opens the class and inside the curly brackets properties
and methods are written. we’ll now add these properties and methods:

PHP Code:

class Ship {

 public $name;
 public $coaches;
 public $engineStatus;
 public $speed;

 function startEngine() {}
 function stopEngine() {}
 function moveTo($location) {}

}

Our ship now has a name ($name), a number of coaches ($coaches) and a
speed ($speed). In addition we built in a variable, containing the status
of the engine ($engineStatus). A real ship, of course, has much more
properties, all important somehow – for our abstraction these few will be
sufficient though. We’ll focus on why every property is marked with the key
word public further down.

Note

For methods and properties we use a notation called lowerCamelCase: The
first letter is lower case and all other parts are added without blank or
underscore in upper case. This is a convention used in Flow.

We can also switch on the engine (startEngine()), travel with the ship to
the desired destination (moveTo($location)) and switch off the engine
again (stopEngine()). Note that all methods are empty, i.e. we have no
content at all. We’ll change this in the following examples, of course. The
line containing method name and (if available) parameters is called method
signature or method head. Everything contained by the method ist called method
body accordingly.

Now we’ll finally create an object from our class. The class ship will be
the blueprint and $fidelio the concrete object.

PHP Code:

$fidelio = new Ship();

// Display the object
var_dump($fidelio);

The key word new is used to create a concrete object from the class.
This object is also called Instance **and the creation process
consequentially **Instantiation. We can use the command var_dump() to
closely examine the object. We’ll see the following

PHP Code:

object(Ship)#1 (3) {

 ["name"] => NULL

 ["coaches"] => NULL

 ["engineStatus"] => NULL

 ["speed"] => NULL

}

We can clearly see that our object has 4 properties with a concrete value, at
the moment still NULL, for we did not yet assign anything. We can instantiate
as many objects from a class as we like, and every single one will differ from
the others – even if all of the properties have the same values.

PHP Code:

$fidelio1 = new Ship();
$fidelio2 = new Ship();

if ($fidelio1 === $fidelio2) {
 echo 'objects are identical!'
} else {
 echo 'objects are not identical!'
}

In this example the output is objects are not identical!

The arrow operator

We are able to create an object now, but of course it’s properties are
still empty.We’ll hurry to change this by assigning values to the properties.
For this, we use a special operator, the so called arrow operator (->). We can
use it for getting access to the properties of an object or calling methods. In
the following example, we set the name of the ship and call some methods:

PHP Code:

$ship = new Ship();
$ship->name = "FIDELIO";

echo "The ship's Name is ". $ship->name;

$ship->startEngine();
$ship->moveTo('Bahamas');
$ship->stopEngine();

$this

Using the arrow operator we can now comfortably access properties and methods
of an object. But what to do, if we want to do this from inside a method, e.g.
to set $speed ``inside of the method ``startEngine()? We don’t know at this
point, how an object to be instantiated later will be called. So we need a
mechanism to do this independent from the name. This is done with the special
variable $this.

PHP Code:

class Ship {

 ...

 public $speed;

 ...

 function startEngine() {

 $this->speed = 200;

 }

}

With $this->speed you can access the property speed in the actual object,
independently of it’s name.

Constructor

It can be very useful to initialize an object at the Moment of
instantiating it. Surely there will be a certain number of coaches built in
right away, when a new cruise liner is created - so that the future guest will
not be forced to sleep in emergency accommodation. So we can define the number
of coaches right when instantiating. The processing of the given value is done
in a method automatically called on creation of an object, the so called
Constructor. This special method always has the name __construct() (the
first two characters are underscores).

The values received from instantiating are now passed on to the constructor as
Argument and then assigned to the properties $coaches ``respectively ``$name.

Inheritance of Classes

With the class we created we can already do a lot. We can create many ships and
send them to the oceans of the world. But of course the shipping company always
works on improving the offer of cruise liners. Increasingly big and beautiful
ships are built. Also new offers for the passengers are added. FIDELIO2, for
example, even has a little golf course based on deck.

If we look behind the curtain of this new luxury liner though, we find that the
shipping company only took a ship type FIDELIO and altered it a bit. The basis
is the same. Therefore it makes no sense to completely redefine the new ship –
instead we use the old definition and just add the golf course – just as the
shipping company did. Technically speaking we extend an “old” class definition
by using the key word extends.

PHP Code:

class LuxuryLiner extends Ship {

 public $luxuryCoaches;

 function golfSimulatorStart() {

 echo 'Golf simulator on ship ' . $this->name . '
 started.';

 }

 function golfSimulatorStop() {

 echo 'Golf simulator on ship ' . $this->name . '
 stopped.';

 }

}

$luxuryShip = new LuxuryLiner('FIDELIO2','600')

Our new luxury liner comes into existence as easy as that. We define, that the
luxury liner just extends the Definition of the class Ship. The extended
class (in or example Ship) is called parent class **or **superclass.
The class formed by Extension (in our example LuxuryLiner) is called
child class **or **sub class.

The class LuxuryLiner now contains the complete configuration of the base
class Ship (including all properties and methods) and defines additional
properties (like the amount of luxury coaches in $luxuryCoaches) and
additional methods (like golfSimulatorStart() and golfSimulatorStop()).
Inside these methods you can again access the properties and methods of the
parent class by using $this.

Overriding Properties and Methods

Inside an inherited class you can not only access properties and methods of the
parent class or define new ones. It’s even possible to override the original
properties and methods. This can be very useful, e.g. for giving a method of
a child class a new functionality. Let’s have a look at the method
startEngine() for example:

PHP Code:

class Ship {
 ...
 $engineStatus = 'OFF';
 ...
 function startEngine() {
 $this->engineStatus = 'ON';
 }
 ...
}

class Luxusliner extends Ship {
 ...
 $additionalEngineStatus = 'OFF';
 ...
 function startEngine() {
 $this->engineStatus = 'ON';
 $this->additionalEngineStatus = 'ON';
 }
 ...
}

Our luxury liner (of course) has an additional motor, so this has to be
switched on also, if the method startEngine() is called. The child class
now overrides the method of the parent class and so only the method
startEngine() of the child class is called.

Access to the parent class through “parent”

Overriding a method comes in handy, but has a serious disadvantage. When
changing the method startEngine() in the parent class, we’d also have to
change the method in the child class. This is not only a source for errors but
also kind of inconvenient. It would be better to just call the method of the
parent class and then add additional code before or after the call. That’s
exactly what can be done by using the key word parent. With
parent::methodname() the method of the parent class can be accessed
comfortably - so our former example can be re-written in a smarter way:

PHP Code:

class Ship {
 ...
 $engineStatus = 'OFF';
 ...
 function startEngine() {
 $this->engineStatus = 'ON';
 }
 ...
}

class Luxusliner extends Ship {
 ...
 $additionalEngineStatus = 'OFF';
 ...
 function startEngine() {
 parent::startEngine();
 $this->additionalEngineStatus = 'ON';
 }
 ...
}

Abstract classes

Sometimes it is useful to define “placeholder methods” in the parent class
which are filled in the child class. These “placeholders” are called
abstract methods. A class containing abstract methods is called abstract
class. For our ship there could be a method setupCoaches(). Each type of
ship is to be handled differently for each has a proper configuration. So each
ship must have such a method but the concrete implementation is to be done
separately for each ship type.

PHP Code:

abstract class Ship {
...
 function __construct() {
 $this->setupCoaches();
 }
 abstract function setupCoaches();
...
}

class Luxusliner extends Ship {
...
 function setupCoaches() {
 echo 'Coaches are being set up';
 }
}

$luxusschiff = new Luxusliner();

In the parent class we have defined only the body of the
method setupCoaches(). The key word abstract makes sure that the method
must be implemented in the child class. So using abstract classes, we can
define which methods have to be present later without having to implement them
right away.

Interfaces

Interfaces are a special case of abstract classes in which all methods are
abstract. Using Interfaces, specification and implementation of functionality
can be kept apart. In our cruise example we have some ships supporting
satellite TV and some who don’t. The ships who do, have the methods
enableTV() and disableTV(). It is useful to define an interface
for that:

PHP Code:

interface SatelliteTV {
 public function enableTV();
 public function disableTV();
}

class Luxusliner extends Ship implements SatelliteTV {

 protected $tvEnabled = FALSE;

 public function enableTV() {
 $this->tvEnabled = TRUE;
 }
 public function disableTV() {
 $this->tvEnabled = FALSE;
 }
}

Using the key word implements it is made sure, that the class implements
the given interface. All methods in the interface definition then have to be
realized. The object LuxuryLiner now is of the type Ship but also of
the type SatelliteTV. It is also possible to implement not only one
interface class but multiple, separated by comma. Of course interfaces can also
be inherited by other interfaces.

Visibilities: public, private and protected

Access to properties and methods can be restricted by different visibilities to
hide implementation details of a class. The meaning of a class can be
communicated better like this, for implementation details in internal methods
can not be accessed from outside. The following visibilities exist:

	public: properties and methods with this visibility can be accessed
from outside the object. If no Visibility is defined, the behavior of
public is used.

	protected: properties and methods with visibility protected can
only be accessed from inside the class and it’s child classes.

	private: properties and methods set to private can only be
accessed from inside the class itself, not from child classes.

Access to Properties

This small example demonstrates how to work with protected properties:

PHP Code:

abstract class Ship {
 protected $coaches;
 ...
 abstract protected function setupCoaches();
}

class Luxusliner extends Ship {
 protected function setupCoaches() {
 $this->coaches = 300;
 }
}

$luxusliner = new Luxusliner('Fidelio', 100);
echo 'Number of coaches: ' . $luxusliner->coaches; // Does NOT work!

The LuxuryLiner may alter the property coaches, for this is protected.
If it was private no access from inside of the child class would
be possible. Access from outside of the hierarchy of inheritance (like in the
last line of the example) is not possible. It would only be possible if the
property was public.

We recommend to define all properties as protected. Like that, they can not
be altered any more from outside and you should use special methods (called
getter and setter) to alter or read them. We’ll explain the use of these
methods in the following section.

Access to Methods

All methods the object makes available to the outside have to be defined as
public. All methods containing implementation details, e.g.
setupCoaches() in the above example, should be defined as protected.
The visibility private should be used most rarely, for it prevents methods
from being overwritten or extended.

Often you’ll have to read or set properties of an object from outside. So you’ll
need special methods that are able to set or get a property. These methods are
called setter respectively getter. See the example.

PHP Code:

class Ship {

 protected $coaches;
 protected $classification = 'NORMAL';

 public function getCoaches() {
 return $this->coaches;
 }

 public function setCoaches($numberOfCoaches) {
 if ($numberOfCoaches > 500) {
 $this->classification = 'LARGE';
 } else {
 $this->classification = 'NORMAL';
 }
 $this->coaches = $numberOfCoaches;
 }

 public function getClassification() {
 return $this->classification;
 }

 ...
}

We now have a method setCoaches() which sets the number of coaches.
Furthermore it changes - depending on the number of coaches - the ship
category. You now see the advantage: When using methods to get and set the
properties, you can perform more complex operations, as e.g. setting of
dependent properties. This preserves consistency of the object. If you set
$coaches and $classification to public, we could set the number of
cabins to 1000 and classification to NORMAL - and our ship would end up
being inconsistent.

Note

In Flow you’ll find getter and setter methods all over. No property in
Flow is set to public.

Static Methods and Properties

Until now we worked with objects, instantiated from classes. Sometimes though,
it does not make sense to generate a complete object, just to be able to use a
function of a class. For this php offers the possibility to directly access
properties and methods. These are then referred to as static properties
respectively static methods. Take as a rule of thumb: static properties are
necessary, every time two instances of a class are to have a common property.
Static methods are often used for function libraries.

Transferred to our example this means, that all ships are constructed by the
same shipyard. in case of technical emergency, all ships need to know the
actual emergency phone number of this shipyard. So we save this number in a
static property $shipyardSupportTelephoneNumber:

PHP Code:

class Luxusliner extends Ship {
 protected static $shipyardSupportTelephoneNumber = '+49 30 123456';

 public function reportTechnicalProblem() {
 echo 'On the ship ' . $this->name . ' a problem has been discovered.
 Please inform ' . self::$shipyardSupportTelephoneNumber;
 }

 public static function setShipyardSupportTelephoneNumber($newNumber) {
 self::$shipyardSupportTelephoneNumber = $newNumber;
 }
}

$fidelio = new Luxusliner('Fidelio', 100);
$figaro = new Luxusliner('Figaro', 200);

$fidelio->reportTechnicalProblem();
$figaro->reportTechnicalProblem();

Luxusliner::setShipyardSupportTelephoneNumber('+01 1000');

$fidelio->reportTechnicalProblem();
$figaro->reportTechnicalProblem();

// Output
On the ship Fidelio a problem has been discovered. Please inform +49 30 123456
On the ship Figaro a problem has been discovered. Please inform +49 30 123456
On the ship Fidelio a problem has been discovered. Please inform +01 1000
On the ship Figaro a problem has been discovered. Please inform +01 1000

What happens here? We instantiate two different ships, which both have a problem
and do contact the shipyard. Inside the method reportTechnicalProblem() you
see that if you want to use static properties, you have to trigger them with the
key word self::. If the emergency phone number now changes, the shipyard has
to tell all the ships about the new number. For this it uses the
static method setShipyardSupportTelephoneNumber($newNumber). For the
method is static, it is called through the scheme classname::methodname(),
in our case LuxuryLiner::setShipyardSupportTelephoneNumber(...).
If you check the latter two problem reports, you see that all instances of the
class use the new phone number. So both ship objects have access to the same
static variable $shipyardSupportTelephoneNumber.

Important design- and architectural patterns

In software engineering you’ll sooner or later stumble upon design problems that
are connatural and solved in a similar way. Clever people thought about design
patterns aiming to be a general solution to a problem. Each design pattern is
so to speak a solution template for a specific problem. We by now have multiple
design patterns that are successfully approved in practice and therefore have
found there way in modern programming and especially Flow. In the following we
don’t want to focus on concrete implementation of the design patterns, for this
knowledge is not necessary for the usage of Flow. Nevertheless deeper knowledge
in design patterns in general is indispensable for modern programming style, so
it might be fruitful for you to learn about them.

Tip

Further information about design patterns can e.g. be found on
http://sourcemaking.com/ or in the book PHP Design Patterns by Stephan
Schmidt, published by O’Reilly.

From the big number of design patterns, we will have a closer look on two that
are essential when programming with Flow: Singleton & Prototype.

Singleton

This design pattern makes sure, that only one instance of a class can exist
at a time. In Flow you can mark a class as singleton by annotating it
with @Flow\Scope("singleton"). An example: our luxury liners are all constructed
in the same shipyard. So there is no sense in having more than one instance of
the shipyard object:

PHP Code:

/**
 * @Flow\Scope("singleton")
 */
class LuxuslinerShipyard {
 protected $numberOfShipsBuilt = 0;

 public function getNumberOfShipsBuilt() {
 return $this->numberOfShipsBuilt;
 }

 public function buildShip() {
 $this->numberOfShipsBuilt++;
 // Schiff bauen und zurückgeben
 }
}

$luxuslinerShipyard = new LuxuslinerShipyard();
$luxuslinerShipyard->buildShip();

$theSameLuxuslinerShipyard = new LuxuslinerShipyard();
$theSameLuxuslinerShipyard->buildShip();

echo $luxuslinerShipyard->getNumberOfShipsBuilt(); // 2
echo $theSameLuxuslinerShipyard->getNumberOfShipsBuilt(); // 2

Prototype

Prototype is sort of the antagonist to Singleton. While for each class only one
object is instantiated when using Singleton, it is explicitly allowed to have
multiple instances when using Prototype. Each class annotated with
@Flow\Scope("prototype") is of type Prototype. Since this is the default
scope, you can safely leave this one out.

Note

Originally for the design pattern Prototype is specified, that a new
object is to be created by cloning an object prototype. We use Prototype as
counterpart to Singleton, without a concrete pattern implementation in the
background, though. For the functionality we experience, this does not make
any difference: We invariably get back a new instance of a class.

Now that we refreshed your knowledge of object oriented programming, we can
take a look at the deeper concepts of Flow: Domain Driven Design,
Model View Controller and Test Driven Development. You’ll spot the basics we
just talked about in the following frequently.

Essential Design Patterns

Flow Paradigm

Flow was designed from the ground up to be modular, adaptive and agile to
enable developers of all skill levels to build maintainable, extensible and
robust software through the implementation of several proven design paradigms.
Building software based on these principles will allow for faster, better
performing applications that can be extended to meet changing requirements while
avoiding inherent problems introduced by traditional legacy code maintenance.
Flow aims to make what you “should” do what you “want” to do by providing the
framework and community around best practices in the respective essential design
patterns.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm which complements
Object-Oriented Programming (OOP) by separating concerns of a software
application to improve modularization. The separation of concerns (SoC) aims for
making a software easier to maintain by grouping features and behavior into
manageable parts which all have a specific purpose and business to take care of.

OOP already allows for modularizing concerns into distinct methods, classes and
packages. However, some concerns are difficult to place as they cross the
boundaries of classes and even packages. One example for such a cross-cutting
concern is security: Although the main purpose of a Forum package is to display
and manage posts of a forum, it has to implement some kind of security to assert
that only moderators can approve or delete posts. And many more packages need a
similar functionality for protect the creation, deletion and update of records.
AOP enables you to move the security (or any other) aspect into its own package
and leave the other objects with clear responsibilities, probably not
implementing any security themselves.

Tip

Planning out the purpose and use cases of a package before you create it will
allow for backwards compatibility by creating an unchanging interface for
independent classes to consume.

Dependency Injection

In AOP there is focus on building reusable components that can be wired together
to create a cohesive architecture. This goal becomes increasingly difficult
because as the size and complexity of an application expands, so does its
dependencies. One technique to aliviate dependency management is through
Dependency Injection (DI).

Dependency Injection (DI) is a technique by which a package can request and gain
access to another package simply by asking the injector. An injector is the
service provided within a framework to instantiate and provide access to
package interfaces upon request.

DI enables a package to control what dependencies it requires while allowing the
framework or another third party system to handle the fullfillment of each
dependency. This is know as Inversion of Control (IoC). IoC delegates the
responsibility of dependency resolution to the framework while each package
specifies which dependencies it needs.

AOP provides a means for interaction between packages through various interfaces
and aspect. Without Dependency Injection AOP would suffer from creating
untestable code by requiring you to manage dependencies in the constructor
and thus breaking the Law of Demeter by allowing a package to “look” for
its dependencies with a system instead of “asking” for them through the
autonomous injector.

Test Driven Development

Test Driven Development (TDD) is a means in which a developer can explore,
implement and verify various independent pieces of an application in order to
deliver stable and maintainable code. TDD has become popular in mainstream
development because the first step required is to think about what the purpose
of a class or method is in the scope of your package’s feature requirements
incrementally, revising and refining small pieces of code while maintaining
overall integrity of the system as whole.

Five Steps of Test Driven Development

	Think: Before you write anything, consider what is required of the code
you are about to create.

	Frame: Write the simplest test possible, less than five lines of code or
so that describe what you expect the method to do.

	Fulfill: Again, write a small amount of code to meet the expectations of
your test so that is passes. (It’s acceptable to hard code variables and
returns as you explore and think about the method, cleaning it up as you go.)

	Re-factor: Now that you have a simple passing test, you know that your
code as it stands works and can work on making it better while keeping an
eye on if it breaks of not. Think about ways to improve your code by removing
duplication and other “ugly” code until you feel it looks correct. Re-run the
tests and make sure it still passes, if not, fix it.

	Repeat: Do it again. Look at your test to make sure you are testing what
it should do, not what it is doing. Add to your test if you find something
missing and continue looping through the process until you’re happy that the
code can’t be made any clearer with its current set of requirements. The more
times you repeat, the better the resulting code will be.

Domain Driven Design

Domain-driven Design (DDD) is a practice where an implementation is deeply
coupled with the evolving business model within its respective domain.
Typically when working with DDD, technical experts are paired with a domain
experts to ensure that each iteration of a system is getting closer to the core
problem.

	DDD relies on the following foundational elements:

	
	Domain: An ontology of concepts related to a specific area of
knowledge and information.

	Model: An abstract system that describes the various aspects of a
domain.

	Ubiquitous Language: A glossary of language structured around a
domain model to connect all aspects of a model with uniformed definitions.

	Context: The relative position in which an expression of words are
located that determine it’s overall meaning.

In DDD the Domain Model that is formed is a guide or measure of the overall
implementation of an applications relationship to the core requirements of the
problem it is trying to solve. DDD is not a specific technique or way of
developing software, it is a system to ensure that the desired result and end
result of a development iteration or aligned. For this reason, DDD is often
coupled with TDD and AOP.

Domain-Driven Design

Domain-Driven Design is a development technique which focuses on understanding
the customer’s problem domain. It not only contains a set of technical
ideas, but it also consists of techniques to structure the creativity in
the development process.

The key of Domain-Driven Design is understanding the customers
needs, and also the environment in which the customer works. The problem
which the to-be-written program should solve is called the
problem domain, and in Domain-Driven Design,
development is guided by the exploration of the problem domain.

While talking to the customer to understand his needs and wishes,
the developer creates a model which reflects the current understanding
of the problem. This model is called Domain Model
because it should accurately reflect the problem domain of the customer.
Then, the domain model is tested with real use-cases, trying to
understand if it fits to the customer’s processes and way of working.
Then, the model is refined again – and the whole process of discussion
with the customer starts again. Thus, Domain-Driven Design is an
iterative approach to software development.

Still, Domain-Driven Design is very pragmatic, as code is created
very early on (instead of extensive requirements specifications); and
real-world problems thus occur very early in the development process,
where they can be easily corrected. Normally, it takes some iterations
of model refinement until a domain model adequately reflects the problem
domain, focusing on the important properties, and leaving out
unimportant ones.

In the following sections, some core components of Domain-Driven
Design are explained. It starts with an approach to create a ubiquitous
language, and then focuses on the technical realization of the domain
model. After that, it is quickly explained how Flow enables
Domain-Driven Design, such that the reader gets a more practical
understanding of it.

Note

We do not explain all details of Domain-Driven Design in this
work, as only parts of it are important for the general understanding
needed for this work. More information can be found at [Evans].

Creating a Ubiquitous Language

In a typical enterprise software project, a multitude of
different roles are involved: For instance, the customer is an expert
in his business, and he wants to use software to solve a certain
problem for him. Thus, he has a very clear idea on the interactions of
the to-be-created software with the environment, and he is one of the
people who need to use the software on a daily basis later on. Because
he has much knowledge about how the software is used, we call him the
Domain Expert.

On the other hand, there are the developers who actually need to
implement the software. While they are very skilled in applying
certain technologies, they often are no experts in the problem domain.
Now, developers and domain experts speak a very different language,
and misconceptions happen very often.

To reduce miscommunication, a ubiquitous
language should be formed, in which key terms of the
problem domain are described in a language understandable to both the
domain expert and the developer. Thus, the developers learn to use the
correct language of the problem domain right from the beginning, and
can express themselves in a better way when discussing with the domain
expert. Furthermore, they should also use the ubiquitous language
throughout all parts of the project: Not only in communication, design
documents and documentation, but the key terms should also appear in
the domain model. Names of classes, methods and properties are also
part of the ubiquitous language.

By using the language of the domain expert also in the code, it
is possible to discuss about difficult-to-specify functionality by
looking at the code together with the domain expert. This is
especially helpful for complex calculations or difficult-to-specify
condition rules. Thus, the domain expert can decide whether the
business logic was correctly implemented.

Creating a ubiquitous language involves creating a glossary, in
which the key terms are explained in a way both understandable to the
domain expert and the developer. This glossary is also updated
throughout the project, to reflect new insights gained in the
development process.

Modelling the domain

Now, while discussing the problem with the domain expert, the
developer starts to create the domain model, and refines it step by
step. Usually, UML is employed for that, which just contains the
relevant information of the problem domain.

The domain model consists of objects (as DDD is a technique for
object-oriented languages), the so-called Domain
Objects.

There are two types of domain objects, called
Entities and Value Objects.
If a domain object has a certain identity which
stays the same as the objects changes its state, the object is an
entity. Otherwise, if the identity of an object
is only defined from all properties, it is a
value object. We will now explain these two types
of objects in detail, including practical use-cases.

Furthermore, association mapping is explained, and aggregates
are introduced as a way to further structure the code.

Entities

Entities have a unique identity, which stays the same despite
of changes in the properties of the object. For example, a user can
have a user name as identity, a student a matriculation ID.
Although properties of the objects can change over time (for example
the student changes his courses), it is still the same object. Thus,
the above examples are entities.

The identity of an object is given by an immutable property or
a combination of them. In some use-cases it can make a lot of sense
to define identity properties in a way which is meaningful
in the domain context: If building an application which
interfaces with a package tracking system, the tracking ID of a
package should be used as identity inside the system. Doing so will
reduce the risk of inconsistent data, and can also speed up
access.

For some domain objects like a Person, it is
highly dependent on the problem domain what should be used as
identity property. In an internet forum, the e-mail address is often
used as identity property for people, while when implementing an
e-government application, one might use the passport ID to uniquely
identify citizens (which nobody would use in the web forum because
its data is too sensible).

In case the developer does not specify an identity property,
the framework assigns a universally unique identifier (UUID) to the
object at creation time.

It is important to stress that identity properties need to be
set at object creation time, i.e. inside the
constructor of an object, and are not allowed to change throughout
the whole object lifetime. As we will see later, the object will be
referenced using its identity properties, and a change of an
identity property would effectively wipe one object and create a new
one without updating dependent objects, leaving the system in an
inconsistent state.

In a typical system, many domain objects will be
entities. However, for some use-cases, another
type is a lot better suited: Value objects, which are explained in
the next section.

Value Objects

PHP provides several value types which it supports internally:
Integer, float, string, float and array. However, it is often the
case that you need more complex types of values inside your domain.
These are being represented using value
objects.

The identity of a value object is defined by all its
properties. Thus, two objects are equal if all properties
are equal. For instance, in a painting program, the concept of
color needs to be somewhere implemented. A
color is only represented through its value, for instance using RGB
notation. If two colors have the same RGB values, they are
effectively similar and do not need to be distinguished
further.

Value objects do not only contain data, they can potentially
contain very much logic, for example for converting the color value
to another color space like HSV or CMYK, even taking color profiles
into account.

As all properties of a value object are part of its identity,
they are not allowed to be changed after the object’s creation.
Thus, value objects are immutable. The only way
to “change” a value object is to create a new one using the old one
as basis. For example, there might be a method mix on
the Color object, which takes another
Color object and mixes both colors. Still, as the
internal state is not allowed to change, the mix method
will effectively return a new Color object containing
the mixed color values.

As value objects have a very straightforward semantic
definition (similar to the simple data types in many programming
languages), they can easily be created, cloned or transferred to
other subsystems or other computers. Furthermore, it is clearly
communicated that such objects are simple
values.

Internally, frameworks can optimize the use of value objects
by re-using them whenever possible, which can greatly reduce the
amount of memory needed for applications.

Entity or Value Object?

An object can not be ultimately categorized into either
being an entity or a value object – it depends greatly on the use
case. An example illustrates this: For many applications which
need to store an address, this address is
clearly a value object - all properties like street, number, or
city contribute to the identity of the object, and the
address is only used as container for these
properties.

However, if implementing an application for a postal service
which should optimize letter delivery, not only the address, but
also the person delivering to this location should be stored. This
name of the postman does not belong to the identity of the object,
and can change over time – a clear sign of
Address being an entity in this case. So,
generally it often depends on the use-case whether an object is an
entity or value object.

People new to Domain-Driven Design often tend to overuse
entities, as this is what people coming from a relational database
background are used to.

So why not just use entities all the time?
The design/architectural answer is: because a value object might just
be more fitting your problem at hand.
The technical answer is: because value objects are immutable and
therefore avoid aliasing 1 problems, which are common cause
of all kinds of bugs.

Associations

Now, after explaining the two types of domain objects, we will
look at a particularly important implementation area: Associations
between objects.

Domain objects have relationships between them. In the domain
language, these relations are expressed often as follows: A
consists of B, C has D, E
processes F, G belongs to
H. These relations are called associations in
the domain model.

In the real world, relationships are often inherently
bidirectional, are only active for a certain time span, and can
contain further information. However, when modelling these
relationships as associations, it is important to simplify them as
much as possible, encoding only the relevant information into the
domain model.

Especially complex to implement are bidirectional many-to-many
relations, as they can be traversed in both directions, and consist
of two lists of objects which have to be kept in sync manually in
most programming languages (such as Java or PHP).

Still, especially in the first iterations of refining the
domain model, many-to-many relations are very common. The following
questions can help to simplify them:

	Is the association relevant for the core functionality of
the application?
If it is only used in rare use cases and there is another
way to receive the needed information, it is often better to
drop the association altogether.

	For bidirectional associations, can they be converted to
unidirectional associations, because there is a main traversal
direction?
Traversing the other direction is still possible by
querying the underlying persistence system.

	Can the association be qualified more restrictively, for
example by adding multiplicities on each side?

The more simple the association is, the more directly it can
be mapped to code, and the more clear the intent is.

Aggregates

When building a complex domain model, it will contain a lot of
classes, all being on the same hierarchy level. However, often it is
the case that certain objects are parts of a bigger object. For
example, when modeling a Car domain object for a car
repair shop, it might make sense to also model the wheels and the
engine. As they are a part of the car, this understanding should be
also reflected in our model.

Such a part-whole relationship of closely related objects is
called Aggregate. An aggregate contains a root,
the so-called Aggregate Root, which is
responsible for the integrity of the child-objects. Furthermore, the
whole aggregate has only one identity visible to the outside: The
identity of the aggregate root object. Thus, objects outside of the
aggregate are only allowed to persistently reference the aggregate
root, and not one of the inner objects.

For the Car example this means that a
ServiceStation object should not reference the engine
directly, but instead reference the Car through its
external identity. If it still needs access to the
engine, it can retrieve it through the Car
object.

These referencing rules effectively structure the domain model
on a more fine-grained level, which reduces the complexity of the
application.

Life cycle of objects

Objects in the real world have a certain life cycle. A car is
built, then it changes during its lifetime, and in the end it is
scrapped. In Domain-Driven Design, the life cycle of domain objects is
very similar:

[image: Simplified life cycle of objects]
Simplified life cycle of objects

Because of performance reasons, it is not feasible to keep all
objects in memory forever. Some kind of persistent storage, like a
database, is needed. Objects which are not needed at the current point
in time should be persistently stored, and only transformed into
objects when needed. Thus, we need to expand the active
state from Simplified life cycle of objects to contain some more
substates. These are shown below:

[image: The real life cycle of objects]
The real life cycle of objects

If an object is newly created, it is
transient, so it is being deleted from memory at
the end of the current request. If an object is needed permanently
across requests, it needs to be transformed to a persistent
object. This is the responsibility of
Repositories, which allow to persistently store
and retrieve domain objects.

So, if an object is added to a repository,
this repository becomes responsible for saving the object.
Furthermore, it is also responsible for persisting further changes to
the object throughout its lifetime, automatically updating the
database as needed.

For retrieving objects, repositories provide a query language.
The repository automatically handles the database retrieval, and makes
sure that each entity is only once in memory.

Despite the object being created and retrieved multiple times
during its lifecycle, it logically continues to exist, even when it is
stored in the database. It is only because of performance and safety
reasons that is is not stored in main memory, but in a database. Thus,
Domain-Driven Design distinguishes creation of an
object from reconstitution from database: In the
first case, the constructor is called, in the second case the
constructor is not called as the object is only converted from another
representation form.

In order to remove a persistent object, it needs to be removed
from the repository responsible for it, and then at the end of the
request, the object is transparently removed from the database.

For each aggregate, there is exactly one
repository responsible which can be used to fetch the
aggregate root object.

How Flow enables Domain-Driven Design

Flow is a web development framework written in PHP, with
Domain-Driven Design as its core principle. We will now show in what
areas Flow supports Domain-Driven Design.

First, the developer can directly focus on creating the domain
model, using unit testing to implement the use-cases needed. While he
is creating the domain model, he can use plain PHP functionality,
without caring about any particular framework. The PHP domain model he
creates just consists of plain PHP objects, with no base class or
other magic functionality involved. Thus, he can fully concentrate on
domain modelling, without thinking about infrastructure yet.

This is a core principle of Flow: All parts of it strive for
maximum focus and cleanness of the domain model, keeping the developer
focused on the correct implementation of it.

Furthermore, the developer can use source code annotations to
attach metadata to classes, methods or properties. This functionality
can be used to mark objects as entity or value object, and to add
validation rules to properties. In the domain object below,
a sample of such an annotated class is given. As PHP does not have a
language construct for annotations, this is emulated by Flow by
parsing the source code comments.

In order to mark a domain object as aggregate
root, only a repository has to be created for it, based on
a certain naming convention. Repositories are the easiest way to make domain
objects persistent, and Flow provides a base class containing generic
findBy* methods. Furthermore, it supports a
domain-specific language for building queries which can be used for
more complex queries, as shown in below in the AccountRepository.

Now, this is all the developer needs to do in order to
persistently store domain objects. The database tables are created
automatically, and all objects get a UUID assigned (as we did not
specify an identity property).

A simple domain object being marked as entity, and validation:

/**
 * @Flow\Entity
 */
class Account {

 /**
 * @var string
 */
 protected $firstName;

 /**
 * @var string
 */
 protected $lastName;

 /**
 * @var string
 * @Flow\Validate(type="EmailAddress")
 */
 protected $email;

 ... getters and setters as well as other functions ...
}

A simple repository:

class AccountRepository extends \Neos\Flow\Persistence\Repository {

 // by extending from the base repository, there is automatically a
 // findBy* method available for every property, i.e. findByFirstName("Sebastian")
 // will return all accounts with the first name "Sebastian".
 public function findByName($firstName, $lastName) {
 $query = $this->createQuery();
 $query->matching(
 $query->logicalAnd(
 $query->equals('firstName', $firstName),
 $query->equals('lastName', $lastName)
)
);
 return $query->execute();
 }
}

From the infrastructure perspective, Flow is structured as MVC
framework, with the model being the Domain-Driven Design techniques.
However, also in the controller and the view layer, the system has a
strong support for domain objects: It can transparently convert
objects to simple types, which can then be sent to the client’s
browser. It also works the other way around: Simple types will be
converted to objects whenever possible, so the developer can deal with
objects in an end-to-end fashion.

Furthermore, Flow has an Aspect-Oriented Programming framework
at its core, which makes it easy to separate cross-cutting concerns.
There is a security framework in place (built upon AOP) where the
developer can declaratively define access rules for his domain
objects, and these are enforced automatically, without any checks
needed in the controller or the model.

There are a lot more features to show, like rapid prototyping
support, dependency injection, a signal-slots system and a
custom-built template engine, but all these should only aid the
developer in focusing on the problem domain and writing decoupled and
extensible code.

	1

	https://en.wikipedia.org/wiki/Aliasing_(computing)

Part II: Getting Started

This tutorial gets you started with Flow. The most important concepts such as
the MVC framework, object management, persistence and templating are explained
on the basis of a sample application.

	Introduction

	Requirements

	Installation

	Configuration

	Modeling

	Kickstart

	Model and Repository

	Controller

	View

	Validation

	Routing

	Summary

Introduction

What’s Flow

Flow is a PHP-based application framework. It is especially well-suited for
enterprise-grade applications and explicitly supports Domain-Driven Design, a
powerful software design philosophy. Convention over configuration, Test-Driven
Development, Continuous Integration and an easy-to-read source code are other
important principles we follow for the development of Flow.

Needless to say, Flow provides you with a full-stack MVC framework for building
state-of-the-art web applications. More exciting though are the first class
Dependency Injection support and the Aspect-Oriented Programming capabilities
which can be used without a single line of configuration.

What’s in this tutorial?

This tutorial explains all the steps to get you started with your very own
first Flow project.

Please bring your own computer, a reasonable knowledge of PHP and HTML and at
least some initial experience with object-oriented programming. In return
you’ll surely get some new insights into modern programming paradigms and how
to produce clean code in no time.

Note

If you’re stuck at some point or stumble over some weirdnesses during the
tutorial, please let us know! We appreciate any feedback in our forum [https://discuss.neos.io/], as
a ticket in our issue tracker [https://github.com/neos/flow-development-collection/issues] or via Slack [http://slack.neos.io/].

Tip

This tutorial goes best with a Caffè Latte or, if it’s afternoon or late night
already, with a few shots of Espresso …

Requirements

Flow is being developed and tested on multiple platforms and pretty easy to set
up. Nevertheless we recommend that you go through the following list before installing
Flow, because a server with exotic php.ini settings or wrong file permissions can
easily spoil your day.

Server Environment

Not surprisingly, you’ll need a web server for running your Flow-based web
application. We recommend Apache (though nginx, IIS and others work too – we just
haven’t really tested them). Please make sure that the
mod_rewrite [http://httpd.apache.org/docs/current/mod/mod_rewrite.html] module is
enabled.

Tip

To enable Flow to create symlinks on Windows Server 2008 and higher you need
to do some extra configuration. In IIS you need to configure Authentication for
your site configuration to use a specific user in the Anonymous Authentication
setting. The configured user should also be allowed to create symlinks using the
local security policy Local Policies > User Rights Assignments > Create symbolic links

Flow’s persistence mechanism requires a database supported by Doctrine DBAL [http://www.doctrine-project.org/projects/dbal.html]. Make sure to use at least 10.2.2
for MariaDB, and 5.7.7 when using MySQL.

PHP

Flow was one of the first PHP projects taking advantage of namespaces and
other features introduced in PHP version 5.3. By now we started using features of
PHP 7.1, so make sure you have PHP 7.1.0 or later available on your web server. Make
sure your PHP CLI binary is the same version!

The default settings and extensions of the PHP distribution should work fine
with Flow but it doesn’t hurt checking if the PHP modules mbstring, tokenizer
and pdo_mysql are enabled, especially if you compiled PHP yourself.

Note

Make sure the PHP functions exec(), shell_exec(),
escapeshellcmd() and escapeshellarg() are not disabled in you PHP
installation. They are required for the system to run.

The development context might need more than the default amount of memory.
At least during development you should raise the memory limit to about 250 MB
in your php.ini file.

In case you get a fatal error message saying something like Maximum function nesting
level of '100' reached, aborting!, check your php.ini file for settings regarding
Xdebug and modify/add a line xdebug.max_nesting_level = 500 (suggested value).

Installation

Flow Download

Flow uses Composer [https://getcomposer.org] for dependency management, which is a separate command line tool.
Install it by following the installation instructions [https://getcomposer.org/download/]
which boil down to this in the simplest case:

curl -s https://getcomposer.org/installer | php

Note

Feel free to install the composer command to a global location, by moving
the phar archive to e.g. /usr/local/bin/composer and making it executable.
The following documentation assumes composer is installed globally.

Then use Composer [https://getcomposer.org] in a directory which will be accessible by your web server to download
and install all packages of the Flow Base Distribution. The following command will
clone the latest stable version, include development dependencies and keep git metadata
for future use:

composer create-project --keep-vcs neos/flow-base-distribution tutorial

This will install the latest stable version of Neos. In order to install a specific version, type:

composer create-project --keep-vcs neos/flow-base-distribution <target-directory> <version>

And replace <target-directory> with the folder name to create the project in and <version> with the specific version to install, for example 1.2.
See [Composer documentation](https://getcomposer.org/doc/03-cli.md#create-project) for further details.

Note

Throughout this tutorial we assume that you installed the Flow distribution in
/var/apache2/htdocs/tutorial and that /var/apache2/htdocs is the document root
of your web server. On a Windows machine you might use c:\xampp\htdocs instead.

To update all dependencies, run this from the top-level folder of the distribution:

composer update

Directory Structure

Let’s take a look at the directory structure of a Flow application:

	Directory

	Description

	Configuration/

	Application specific configuration, grouped by contexts

	Data/

	Persistent and temporary data, including caches, logs, resources and the database

	Packages/

	Contains sub directories which in turn contain package directories

	Packages/Framework/

	Packages which are part of the official Flow distribution

	Packages/Application/

	Application specific packages

	Packages/Libraries/

	3rd party libraries

	Web/

	Public web root

A Flow application usually consists of the above directories. As you see, most
of them contain data which is specific to your application, therefore upgrading
the Flow distribution is a matter of updating Packages/Framework/ and
Packages/Libraries/ when a new release is available.

Flow is a package based system which means that all code, documentation and
other resources are bundled in packages. Each package has its own directory
with a defined sub structure. Your own PHP code and resources will usually end
up in a package residing below Packages/Application/.

Basic Settings

In order to be able to run and serve out pages, Flow requires very few configurations.
Flow uses so called YAML files for all it’s configuration. If you don’t know that yet,
just take a look at the example, it is really easy to understand!
For starters, you should begin by renaming the file Configuration/Settings.yaml.example
to Configuration/Settings.yaml. This will be referenced elsewhere as the global
settings file, because it lives in the installation directory, instead of a single
package. It only contains the most basic configuration for a mysql database running
on the same machine and a setting to enable the default Flow [routes](https://en.wikipedia.org/wiki/Web_framework#URL_mapping), which you need
to see the “Welcome” page later.

Neos:
 Flow:
 persistence:
 backendOptions:
 driver: 'pdo_mysql' # use pdo_pgsql for PostgreSQL
 charset: 'utf8mb4' # change to utf8 when using PostgreSQL
 host: '127.0.0.1' # adjust to your database host

 mvc:
 routes:
 'Neos.Flow': TRUE

Also, if you are trying this on Windows by chance, you need to uncomment the lines
about the phpBinaryPathAndFilename and adjust the path to the php.exe.
If you installed e.g. XAMPP, this should be C:\path\to\xampp\php\php.exe.

Other, more specific options should mostly only go directly into package specific
Settings.yaml files. You will learn about those later.

File Permissions

Most of the directories and files must be readable and writable for the user
you’re running Flow with. This user will usually be the same one running your
web server (httpd, www, _www or www-data on most Unix based systems). However it
can and usually will happen that Flow is launched from the command line by a
different user. Therefore it is important that both, the web server user and
the command line user are members of a common group and the file permissions
are set accordingly.

We recommend setting ownership of directories and files to the web server’s
group. All users who also need to launch Flow must also be added this group.
But don’t worry, this is simply done by changing to the Flow base directory
and calling the following command (this command must be called as super user):

sudo ./flow core:setfilepermissions john www-data www-data

Note

Setting file permissions is not necessary and not possible on Windows machines.
For Apache to be able to create symlinks, you need to use Windows Vista (or
newer) and Apache needs to be started with Administrator privileges. Alternatively

you can run the command flow flow:cache:warmup once from an Administrator
elevated command line inside your installation folder. You then also need to
repeat this step, whenever you install new packages.

Now that the file permissions are set, all users who plan using Flow from the
command line need to join the web server’s group. On a Linux machine this can
be done by typing:

sudo usermod -a -G www-data john

On a Mac you can add a user to the web group with the following command:

sudo dscl . -append /Groups/_www GroupMembership johndoe

You will have to exit your shell / terminal window and open it again for the
new group membership to take effect.

Note

In this example the web user was _www and the web group
is called _www as well (that’s the case on a Mac using
MacPorts [https://www.macports.org/]). On your system the user or group
might be www-data, httpd or the like - make sure to find out and
specify the correct user and group for your environment.

Web Server Configuration

As you have seen previously, Flow uses a directory called Web as the public
web root. We highly recommend that you create a virtual host which points to
this directory and thereby assure that all other directories are not accessible
from the web. For testing purposes on your local machine it is okay (but not
very convenient) to do without a virtual host, but don’t try that on a public
server!

Configure AllowOverride and MultiViews

Because Flow provides an .htaccess file with mod_rewrite rules in it,
you need to make sure that the directory grants the neccessary rights:

httpd.conf:

<Directory /var/apache2/htdocs/tutorial/>
 AllowOverride FileInfo Options=MultiViews
</Directory>

The way Flow addresses resources on the web makes it incompatible with the MultiViews
feature of Apache. This needs to be turned off, the default .htaccess file distributed
with Flow contains this code already

<IfModule mod_negotiation.c>

 # prevents Apache's automatic file negotiation, it breaks resource URLs
 Options -MultiViews

</IfModule>

Configure server-side scripts

Important: Disallow execution of server-side scripts below Web/_Resources. If users
can upload (PHP) scripts they can otherwise be executed on the server. This should almost
never be allowed, so make sure to disable PHP (or other script handlers) for anything below
Web/_Resources.

The .htaccess file placed into the Web/_Resources folder does this for Apache when
.htaccess is evaluated. Another way is to use this in the configuration:

<Directory /var/apache2/htdocs/tutorial/Web/_Resources>
 AllowOverride None
 SetHandler default-handler
 php_flag engine off
</Directory>

For nginx and other servers use similar configuration.

Configure a Context

As you’ll learn soon, Flow can be launched in different contexts, the most
popular being Production, Development and Testing. Although there
are various ways to choose the current context, the most convenient is to setup
a dedicated virtual host defining an environment variable.

Setting Up a Virtual Host for Context «Development»

Assuming that you chose Apache 2 as your web server, simply create a new virtual
host by adding the following directions to your Apache configuration
(conf/extra/httpd-vhosts.conf on many systems; make sure it is actually
loaded with Include in httpd.conf):

httpd.conf:

<VirtualHost *:80>
 DocumentRoot /var/apache2/htdocs/tutorial/Web/
 ServerName dev.tutorial.local
</VirtualHost>

This virtual host will later be accessible via the URL http://dev.tutorial.local.

Note

Flow runs per default in the Development context. That’s why the ServerName
in this example is dev.tutorial.local.

Setting Up a Virtual Host for Context «Production»

httpd.conf:

<VirtualHost *:80>
 DocumentRoot /var/apache2/htdocs/tutorial/Web/
 ServerName tutorial.local
 SetEnv FLOW_CONTEXT Production
</VirtualHost>

You’ll be able to access the same application running in Production
context by accessing the URL http://tutorial.local. What’s left is telling
your operating system that the invented domain names can be found on your local
machine. Add the following line to your /etc/hosts file
(C:windowssystem32driversetchosts on Windows):

hosts:

127.0.0.1 tutorial.local dev.tutorial.local

Change Context to «Production» without Virtual Host

If you decided to skip setting up virtual hosts earlier on, you can enable the Production context by editing the .htaccess file in the Web directory and remove the comment sign in front of the SetEnv line:

.htaccess:

You can specify a default context by activating this option:
SetEnv FLOW_CONTEXT Production

Note

The concept of contexts and their benefits is explained in the next chapter «Configuration».

Welcome to Flow

Restart Apache and test your new configuration by accessing
http://dev.tutorial.local in a web browser. You should be greeted by Flow’s
welcome screen:

[image: The Flow Welcome screen]
The Flow Welcome screen

Tip

If you get in trouble during the installation ask for help at discuss.neos.io [https://discuss.neos.io/].

Configuration

Contexts

Once you start developing an application you’ll want to launch it in different
contexts: in a production context the configuration must be optimized for speed
and security while in a development context debugging capabilities and
convenience are more important. Flow supports the notion of contexts which
allow for bundling configuration for different purposes. Each Flow request
acts in exactly one context. However, it is possible to use the same
installation on the same server in distinct contexts by accessing it through a
different host name, port or passing special arguments.

Why do I want contexts?

Imagine your application is running on a live server and your customer
reports a bug. No matter how hard you try, you can’t reproduce the issue on
your local development server. Now contexts allow you to enter the live
application on the production server in a development context without
anyone noticing – both contexts run in parallel. This effectively allows
you to debug an application in its realistic environment (although you
still should do the actual development on a dedicated machine …).

An additional use for context is the simplified staging of your application.
You’ll want almost the same configuration on your production and your
development server - but not exactly the same. The live environment will
surely access a different database or might require other authentication
methods. What you do in this case is sharing most of the configuration and
define the difference in dedicated contexts.

Flow provides configuration for the Production and Development context.
In the standard distribution a reasonable configuration is defined for
each context:

	In the Production context all caches are enabled, logging is reduced to
a minimum and only generic, friendly error messages are displayed to the
user (more detailed descriptions end up in the log).

	In Development context caches are active but a smart monitoring service
flushes caches automatically if PHP code or configuration has been altered.
Error messages and exceptions are displayed verbosely and additional aids
are given for effective development.

Tip

If Flow throws some strange errors at you after you made code changes,
make sure to either manually flush the cache or run the application in
Development context - because caches are not flushed automatically
in Production context.

The configuration for each context is located in directories of the same name:

Context Configurations

	Directory

	Description

	Configuration/

	Global configuration, for all contexts

	Configuration/Development/

	Configuration for the Development context

	Configuration/Production/

	Configuration for the Production context

Note

Setting Up Context with Virtual Host and change Context from «Development» to «Production» is explained in the previous chapter «Installation».

One thing you certainly need to adjust is the database configuration. Aside from that
Flow should work fine with the default configuration delivered with the distribution.
However, there are many switches you can adjust: specify another location for logging,
select a faster cache backend and much more.

The easiest way to find out which options are available is taking a look at the default
configuration of the Flow package and other packages. The respective files are located in
Packages/Framework/<packageKey>/Configuration/. Don’t modify these files directly but
rather copy the setting you’d like to change and insert it into a file within the global
or context configuration directories.

Flow uses the YAML format 1 for its configuration files. If you never edited
a YAML file, there are two things you should know at least:

	Indentation has a meaning: by different levels of indentation, a structure is
defined.

	Spaces, not tabs: you must indent with exactly 2 spaces per level, don’t use tabs.

More detailed information about Flow’s configuration management can be found
in the Reference Manual [http://flowframework.readthedocs.org/en/stable/].

Note

If you’re running Flow on a Windows machine, you do have to make some
adjustments to the standard configuration because it will cause problems
with long paths and filenames. By default Flow caches files within the
Data/Temporary/<Context>/Caches/ directory
whose absolute path can eventually become too long for Windows.

To avoid errors you should change the cache configuration so it points to a
location with a very short absolute file path, for example C:\\tmp\\.
Do that by setting the FLOW_PATH_TEMPORARY_BASE environment variable -
For example in the virtual host part of your Apache configuration:

httpd.conf:

<VirtualHost ...>
 SetEnv FLOW_PATH_TEMPORARY_BASE "C\\:tmp\\"
</VirtualHost>

Important

Parsing the YAML configuration files takes a bit of time which remarkably
slows down the initialization of Flow. That’s why all configuration is
cached by default when Flow is running in Production context. Because this
cache cannot be cleared automatically it is important to know that changes
to any configuration file won’t have any effect until you manually flush
the respective caches.

To avoid any hassle we recommend that you stay in Development context
throughout this tutorial.

Database Setup

Before you can store anything, you need to set up a database and tell Flow how
to access it. The credentials and driver options need to be specified in the global
Flow settings.

Tip

You should make it a habit to specify database settings in context-specific
configuration files. This makes sure your functional tests will never accidentally
truncate your production database. The same line of thought makes sense for other
options as well, e.g. mail server settings.

After you have created an empty database and set up a user with sufficient access
rights, copy the file Configuration/Development/Settings.yaml.example to
Configuration/Development/Settings.yaml. Open and adjust the file to your needs -
for a common MySQL setup, it would look similar to this:

Configuration/Development/Settings.yaml:

Neos:
 Flow:
 persistence:
 backendOptions:
 dbname: 'gettingstarted'
 user: 'myuser'
 password: 'mypassword'

For global settings and Production context, the relevant files would be directly
in Configuration respectively Configuration/Production`.`

Tip

Configure your MySQL server to use the utf8_unicode_ci collation by default if possible!

If you configured everything correctly, the following command will create the initial
table structure needed by Flow:

$./flow doctrine:migrate
Migrating up to 2011xxxxxxxxxx from 0

++ migrating 20110613223837
 -> CREATE TABLE flow_resource_resourcepointer (hash VARCHAR(255) NOT NULL, PRIMARY
 -> CREATE TABLE flow_resource_resource (persistence_object_identifier VARCHAR(40)

...

++ finished in 4.97
++ 5 migrations executed
++ 28 sql queries

	1

	YAML Ain’t Markup Language http://yaml.org

Modeling

Before we kickstart our first application, let’s have a quick look in what
Flow differs from other frameworks.

We claim that Flow lets you concentrate on the essential and in fact this
is one major design goal we followed in the making of Flow. There are many
factors which can distract developers from their principal task to create an
application solving real-world problems. Most of them are infrastructure-
related and reappear in almost every project: security, database, validation,
persistence, logging, visualization and much more. Flow preaches legible code,
well-proven design patterns, true object orientation and provides first class
support for Domain-Driven Design. And it takes care of most of the cross-cutting
concerns, separating them from the business logic of the application. 1 2

Domain-Driven Design

Every software aims to solve problems within its subject area – its domain –
for its users. All the product’s other functions are just padding which serves
to further this aim. If the domain of your software is the booking of hotel
rooms, the reservation and cancellation of rooms are two of your main tasks.
However, the presentation of booking forms or the logging of security-relevant
occurrences do not belong to the domain ‘hotel room bookings’ and primarily
serve to support the main task.

Most of the time it is easy to check whether a function belongs to a domain:
imagine that you are booking a room from a receptionist. He is capable of
accomplishing the task and will readily meet your request. Now imagine how this
employee would react if you asked him to render a booking form or to cache
requests. These tasks fall outside his domain. Only in the rarest cases this is
the domain of an application ‘software’. Rather most programs offer solutions
for real life processes.

To master the complexity of your application it is therefore essential to
neatly separate areas which concern the domain from the code and which merely
serves the infrastructure. For this you will need a layered architecture – an
approach that has worked for decades. Even if you have not previously divided
code into layers consciously, the mantra ‘model view controller’ should fall
easily from your lips 3 . For the model, which is part of this MVC pattern,
is at best a model of part of a domain. As a domain model it is separated
from the other applications and resides in its own layer, the domain layer.

Tip

Of course there is much more to say about Domain-Driven Design which
doesn’t belong in this tutorial. A good starter is the section about DDD
in the Flow documentation.

Domain Model

Our first Flow application will be a blog system. Not because programming
blogs is particularly fancy but because you will
a) feel instantly at home with the domain and
b) it is comparable with tutorials you might know from other frameworks.

So, what does our model look like? Our blog has a number of posts, written by a
certain author, with a title, publishing date and the actual post content. Each
post can be tagged with an arbitrary number of tags. Finally, visitors of the
blog may comment blog posts.

A first sketch shows which domain models (classes) we will need:

[image: A simple model]
A simple model

Let’s add some properties to each of the models:

[image: Domain Mode with properties]
Domain Model with properties

To be honest, the above model is not the best example of a rich Domain Model,
compared to Active Records which usually contain not only properties but also
methods. 4 For simplicity we also defined properties like author as simple
strings – you’d rather plan in a dedicated Author object in a real-world model.

Repositories

Now that you have the models (conceptually) in place, you need to think about
how you will access them. One thing you’ll do is implementing a getter and
setter method for each property you want to be accessible from the outside.
You’ll end up with a lot of methods like getTitle, setAuthor,
addComment and the like 5 . Posts (i.e. Post objects) are stored in
a Blog object in an array or better in an
Doctrine/Common/Collections/Collection 6 instance. For retrieving all posts
from a given Blog all you need to do is calling the getPosts method of the
Blog in question:

$posts = $blog->getPosts();

Executing getComments on the Post would return all related comments:

$comments = $post->getComments();

In the same manner getTags returns all tags attached to a given Post. But
how do you retrieve the active Blog object?

All objects which can’t be found by another object need to be stored in a
repository. In Flow each repository is responsible for exactly one kind of an
object (i.e. one class). Let’s look at the relation between the BlogRepository
and the Blog:

[image: Blog Repository and Blog]
Blog Repository and Blog

As you see, the BlogRepository provides methods for adding, removing and
finding blogs. In our example application only one blog at a time is supported
so all we need is a function to find the active blog – even though the
repository can contain more than one blog.

Now, what if you want to display a list of the 5 latest posts, no matter what
blog they belong to? One option would be to find all blogs, iterate over their
posts and inspect each date property to create a list of the 5 most recent
posts. Sounds slow? It is.

A much better way to find objects by a given criteria is querying a competent
repository. Therefore, if you want to display a list of the 5 latest posts, you
better create a dedicated PostRepository which provides a specialized
findRecentByBlog method:

[image: A dedicated Post Repository]
A dedicated Post Repository

I silently added the findPrevious and findNext methods because you will
later need them for navigating between posts.

Aggregates

With the Post Repository you’re now able to find posts independently from the
Blog. There’s no strict rule for when a model requires its own repository. If
you want to display comments independently from their posts and blogs, you’d
surely need a Comment Repository, too. In this sample application you can do
without it and find the comments you need by calling a getter method on
the Post.

All objects which can only be found through a foreign repository, form an
Aggregate. The object having its own repository (in this case Post) becomes
the Aggregate Root:

[image: The Post Aggregate]
The Post Aggregate

The concept of aggregates simplifies the overall model because all objects of
an aggregate can be seen as a whole: on deleting a post, the framework also
deletes all associated comments and tags because it knows that no direct
references from outside the aggregate boundary may exist.

Something to keep in mind is the opposite behavior the framework applies, when
a repository for an object exists: any changes to it must be registered with that
repository, as any persistence cascading of changes stops at aggregate boundaries.

Enough for the modeling part. You’ll surely want some more classes later but
first let’s get our hands dirty and start with the actual implementation!

	1

	http://en.wikipedia.org/wiki/Domain-driven_design

	2

	Note that we don’t use these techniques for academic reasons.
Personally I have never attended a lecture about software design – I
just love clean code due to the advantages I discovered in my real-
world projects.

	3

	If it doesn’t, we recommend reading our introductory sections about MVC
in the Flow reference.

	4

	see http://en.wikipedia.org/wiki/Active_record_pattern

	5

	Of course we considered magic getters and setters. But then, how do you
restrict read or write access to single properties?
Furthermore, magic methods are notably slower and you loose the benefit
of your IDE’s autocompletion feature. Fortunately IDEs like Netbeans or
Zend Studio provide functions to create getters and
setters automatically.

	6

	see http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html#collections

Kickstart

Flow makes it easy to start with a new application. The Kickstarter package provides
template based scaffolding for generating an initial layout of packages, controllers,
models and views.

Note

At the time of this writing these functions are only available through Flow’s command
line interface. This might change in the future as a graphical interface to the
kickstarter is developed.

Command Line Tool

The script flow resides in the main directory of the Flow distribution.
From a shell you should be able to run the script by entering ./flow:

./flow
Flow 3.0.0 ("Development" context)
usage: ./flow <command identifier>

See './flow help' for a list of all available commands.

To get an overview of all available commands, enter ./flow help:

./flow help
Flow 3.0.0 ("Development" context)
usage: ./flow <command identifier>

The following commands are currently available:

PACKAGE "NEOS.FLOW":

* flow:cache:flush Flush all caches
 cache:warmup Warm up caches

 configuration:show Show the active configuration
 settings
 configuration:listtypes List registered configuration types
 configuration:validate Validate the given configuration
 configuration:generateschema Generate a schema for the given
 configuration or YAML file.

* flow:core:setfilepermissions Adjust file permissions for CLI and
 web server access
* flow:core:migrate Migrate source files as needed
* flow:core:shell Run the interactive Shell

 database:setcharset Convert the database schema to use
 the given character set and
 collation (defaults to utf8mb4 and
 utf8mb4_unicode_ci).

 doctrine:validate Validate the class/table mappings
 doctrine:create Create the database schema
 doctrine:update Update the database schema
 doctrine:entitystatus Show the current status of entities
 and mappings
 doctrine:dql Run arbitrary DQL and display
 results
 doctrine:migrationstatus Show the current migration status
 doctrine:migrate Migrate the database schema
 doctrine:migrationexecute Execute a single migration
 doctrine:migrationversion Mark/unmark a migration as migrated
 doctrine:migrationgenerate Generate a new migration

 help Display help for a command

 package:create Create a new package
 package:delete Delete an existing package
 package:activate Activate an available package
 package:deactivate Deactivate a package
 package:list List available packages
 package:freeze Freeze a package
 package:unfreeze Unfreeze a package
 package:refreeze Refreeze a package

 resource:publish Publish resources
 resource:clean Clean up resource registry

 routing:list List the known routes

 security:importpublickey Import a public key
 security:importprivatekey Import a private key
 security:showeffectivepolicy Shows a list of all defined
 privilege targets and the effective
 permissions for the given groups.
 security:showunprotectedactions Lists all public controller actions
 not covered by the active security
 policy
 security:showmethodsforprivilegetarget Shows the methods represented by the
 given security privilege target

 server:run Run a standalone development server

 typeconverter:list Lists all currently active and
 registered type converters

PACKAGE "NEOS.KICKSTARTER":

 kickstart:package Kickstart a new package
 kickstart:actioncontroller Kickstart a new action controller
 kickstart:commandcontroller Kickstart a new command controller
 kickstart:model Kickstart a new domain model
 kickstart:repository Kickstart a new domain repository

* = compile time command

See './flow help <commandidentifier>' for more information about a specific command.

Depending on your Flow version you’ll see more or less the above available
commands listed.

Kickstart the package

Let’s create a new package Blog inside the Vendor namespace Acme 1:

./flow kickstart:package Acme.Blog

The kickstarter will create three files:

Created .../Acme.Blog/Classes/Controller/StandardController.php
Created .../Acme.Blog/Resources/Private/Layouts/Default.html
Created .../Acme.Blog/Resources/Private/Templates/Standard/Index.html

and the directory Packages/Application/Acme.Blog/ should now contain the
skeleton of the future Blog package:

cd Packages/Application/
find Acme.Blog

Acme.Blog
Acme.Blog/Classes
Acme.Blog/Classes/Controller
Acme.Blog/Classes/Controller/StandardController.php
Acme.Blog/composer.json
Acme.Blog/Configuration
Acme.Blog/Documentation
Acme.Blog/Meta
Acme.Blog/Resources
Acme.Blog/Resources/Private
Acme.Blog/Resources/Private/Layouts
Acme.Blog/Resources/Private/Layouts/Default.html
Acme.Blog/Resources/Private/Templates
Acme.Blog/Resources/Private/Templates/Standard
Acme.Blog/Resources/Private/Templates/Standard/Index.html
Acme.Blog/Tests
Acme.Blog/Tests/Functional
Acme.Blog/Tests/Unit

Switch to your web browser and check at http://dev.tutorial.local/acme.blog if the
generated controller produces some output:

[image: A freshly created Fluid template]
A freshly created Fluid template

Tip

If you get an error at this point, like a “404 Not Found” this could be
caused by outdated cache entries. Because Flow should be running in
Development context at this point, it is supposed to detect changes to
code and resource files, but this seems to sometimes fail… Before you go
crazy looking for an error on your side, try reloading the page and if
that doesn’t work you can clear the cache manually by executing the
./flow flow:cache:flush --force command.

Kickstart Controllers

If you look at the drawing of our overall model you’ll notice that you need controllers
for the most important domain model, being Post.
For the PostController we know that we’ll need some standard actions, so let’s
have them created as well:

./flow kickstart:actioncontroller --generate-actions --generate-related Acme.Blog Post

resulting in:

Created .../Acme.Blog/Classes/Domain/Model/Post.php
Created .../Acme.Blog/Tests/Unit/Domain/Model/PostTest.php
Created .../Acme.Blog/Classes/Domain/Repository/PostRepository.php
Created .../Acme.Blog/Classes/Controller/PostController.php
Omitted .../Acme.Blog/Resources/Private/Layouts/Default.html
Created .../Acme.Blog/Resources/Private/Templates/Post/Index.html
Created .../Acme.Blog/Resources/Private/Templates/Post/New.html
Created .../Acme.Blog/Resources/Private/Templates/Post/Edit.html
Created .../Acme.Blog/Resources/Private/Templates/Post/Show.html
As new models were generated, don't forget to update the database schema with the respective doctrine:* commands.

Tip

To see a full description of the kickstart commands and its options, you can
display more details with ./flow help kickstart::actioncontroller.

Once complete (in the Controller chapter), this new controller will be accessible via http://dev.tutorial.local/acme.blog/post

Please delete the file StandardController.php and its corresponding template
directory as you won’t need them for our sample application 2.

Kickstart Models and Repositories

The kickstarter can also generate models and repositories, as you have seen above
when using the --generate-related option while kickstarting the PostController.
Of course that can also be done specifically with the kickstart:model command.

Before we do this, you should have a look at the next section on models and repositories.

	1

	A “vendor namespace” is used to avoid conflicts with other packages. It is common to use the name of the
company/organization as namespace. See Part III - Package Management for
some more information on package keys.

	2

	If you know you won’t be using the StandardController, you can create a
completely empty package with the package:create command.

Model and Repository

Usually this would now be the time to write a database schema which contains
table definitions and lays out relations between the different tables. But
Flow doesn’t deal with tables. You won’t even access a database manually nor
will you write SQL. The very best is if you completely forget about tables and
databases and think only in terms of objects.

Tip

Code Examples

To see the full-scale code of the Blog as used by some of us, take a look at
the Blog example package [https://github.com/neos/Acme.Blog] in
our Git repository.

Domain models are really the heart of your application and therefore it is
vital that this layer stays clean and legible. In a Flow application a model
is just a plain old PHP object 1. There’s no need to write a schema
definition, subclass a special base model or implement a required interface.
All Flow requires from you as a specification for a model is a proper
documented PHP class containing properties.

All your domain models need a place to live. The directory structure and filenames follow
the conventions of our Coding Guidelines which basically
means that the directories reflect the classes’ namespace while the filename is identical
to the class name.
The base directory for the domain models is Classes/<VendorName>/<PackageName>/Domain/Model/.

Blog Model

The code for your Blog model can be kickstarted like this:

./flow kickstart:model Acme.Blog Blog title:string \
description:string 'posts:\Doctrine\Common\Collections\Collection'

That command will output the created file and a hint:

Created .../Acme.Blog/Classes/Acme/Blog/Domain/Model/Blog.php
Created .../Acme.Blog/Tests/Unit/Domain/Model/BlogTest.php
As a new model was generated, don't forget to update the database schema with the respective doctrine:* commands.

Now let’s open the generated Blog.php file and adjust it slightly:

	Add basic validation rules, see Part III - Validation for background information

	Add extended meta data for the ORM, see Part III - Persistence

	Replace the setPosts() setter by dedicated methods to add/remove single posts

The resulting code should look like this:

Classes/Acme/Blog/Domain/Model/Blog.php:

<?php
namespace Acme\Blog\Domain\Model;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;
use Neos\Flow\Annotations as Flow;
use Doctrine\ORM\Mapping as ORM;

/**
 * A blog that contains a list of posts
 *
 * @Flow\Entity
 */
class Blog {

 /**
 * @Flow\Validate(type="NotEmpty")
 * @Flow\Validate(type="StringLength", options={ "minimum"=3, "maximum"=80 })
 * @ORM\Column(length=80)
 * @var string
 */
 protected $title;

 /**
 * @Flow\Validate(type="StringLength", options={ "maximum"=150 })
 * @ORM\Column(length=150)
 * @var string
 */
 protected $description = '';

 /**
 * The posts contained in this blog
 *
 * @ORM\OneToMany(mappedBy="blog")
 * @ORM\OrderBy({"date" = "DESC"})
 * @var Collection<Post>
 */
 protected $posts;

 /**
 * @param string $title
 */
 public function __construct($title) {
 $this->posts = new ArrayCollection();
 $this->title = $title;
 }

 /**
 * @return string
 */
 public function getTitle() {
 return $this->title;
 }

 /**
 * @param string $title
 * @return void
 */
 public function setTitle($title) {
 $this->title = $title;
 }

 /**
 * @return string
 */
 public function getDescription() {
 return $this->description;
 }

 /**
 * @param string $description
 * @return void
 */
 public function setDescription($description) {
 $this->description = $description;
 }

 /**
 * @return Collection
 */
 public function getPosts() {
 return $this->posts;
 }

 /**
 * Adds a post to this blog
 *
 * @param Post $post
 * @return void
 */
 public function addPost(Post $post) {
 $this->posts->add($post);
 }

 /**
 * Removes a post from this blog
 *
 * @param Post $post
 * @return void
 */
 public function removePost(Post $post) {
 $this->posts->removeElement($post);
 }

}

Tip

The @Flow… and @ORM… strings in the code are called Annotations.
They are namespaced like PHP classes, so for the above code to work you
must add a line like:

use Doctrine\ORM\Mapping as ORM;

to the files as well. Add it right after the use statement for the Flow
annotations that is already there.

As you can see there’s nothing really fancy in it, the class mostly consists of
getters and setters. Let’s take a closer look at the model line-by-line:

Classes/Acme/Blog/Domain/Model/Blog.php:

namespace Acme\Blog\Domain\Model;

This namespace declaration must be the very first code in your file.

Classes/Acme/Blog/Domain/Model/Blog.php:

use Doctrine\Common\Collections\ArrayCollection;
use Doctrine\Common\Collections\Collection;
use Neos\Flow\Annotations as Flow;
use Doctrine\ORM\Mapping as ORM;

These use statements import PHP namespaces to the current scope. They are not required but
can make the code much more readable.
Look at the PHP manual [https://php.net/manual/en/language.namespaces.php] to read more about
PHP namespaces.

Classes/Acme/Blog/Domain/Model/Blog.php:

/**
 * A blog that contains a list of posts
 *
 * @Flow\Entity
 */

On the first glance this looks like a regular comment block, but it’s not. This
comment contains annotations which are an important building block in
Flow’s configuration mechanism.

The annotation marks this class as an entity. This is an important piece
of information for the persistence framework because it declares that

	this model is an entity according to the concepts of Domain-Driven
Design

	instances of this class can be persisted (i.e. stored in the database)

	According to DDD, an entity is an object which has an identity, that
is even if two objects with the same values exist, their identity matters.

The model’s properties are implemented as regular class properties:

Classes/Acme/Blog/Domain/Model/Blog.php:

/**
 * @Flow\Validate(type="NotEmpty")
 * @Flow\Validate(type="StringLength", options={ "minimum"=3, "maximum"=80 })
 * @ORM\Column(length=80)
 * @var string
 */
protected $title;

/**
 * @Flow\Validate(type="StringLength", options={ "maximum"=150 })
 * @ORM\Column(length=150)
 * @var string
 */
protected $description = '';

/**
 * The posts contained in this blog
 *
 * @ORM\OneToMany(mappedBy="blog")
 * @ORM\OrderBy({"date" = "DESC"})
 * @var Collection<Post>
 */
protected $posts;

Each property comes with a @var annotation which declares its type. Any type is fine,
be it simple types (like string, integer, or boolean) or classes (like \DateTime,
\ACME\Foo\Domain\Model\Bar\Baz, Bar\Baz, or an imported class like Baz).

The @var annotation of the $posts property differs a bit from the remaining
comments when it comes to the type. This property holds a list of Post objects
contained by this blog – in fact this could easily have been an array. However, an array
does not allow the collection to be persisted by Doctrine 2 properly. We therefore use a
Collection 2 instance (which is a Doctrine\Common\Collections\Collection, but
we imported it to make the code more readable). The class name bracketed by the
less-than and greater-than signs gives an important hint on the content of the collection
(or array). There are a few situations in which Flow relies on this information.

The OneToMany annotation is Doctrine 2 specific and provides more detail on the
type association a property represents. In this case it tells Doctrine that a Blog may
be associated with many Post instances, but those in turn may only belong to one
Blog. Furthermore the mappedBy attribute says the association is bidirectional and
refers to the property $blog in the Post class.

The OrderBy annotation is regular Doctrine 2 functionality and makes sure the
posts are always ordered by their date property when the collection is loaded.

The Validate annotations tell Flow about limits that it should enforce for a property.
This annotation will be explained in the Validation chapter.

The remaining code shouldn’t hold any surprises - it only serves for setting and
retrieving the blog’s properties. This again, is no requirement by Flow - if you don’t
want to expose your properties it’s fine to not define any setters or getters at all. The
persistence framework can use other ways to access the properties’ values.

We need a model for the posts as well, so kickstart it like this:

./flow kickstart:model --force Acme.Blog Post \
 'blog:Blog' \
 title:string \
 date:\DateTime \
 author:string \
 content:string

Note that we use the --force option to overwrite the model - it was created along with
the Post controller earlier because we used the --generate-related flag.

Adjust the generated code as follows:

Classes/Acme/Blog/Domain/Model/Post.php:

<?php
namespace Acme\Blog\Domain\Model;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Neos\Flow\Annotations as Flow;
use Doctrine\ORM\Mapping as ORM;

/**
 * @Flow\Entity
 */
class Post {

 /**
 * @Flow\Validate(type="NotEmpty")
 * @ORM\ManyToOne(inversedBy="posts")
 * @var Blog
 */
 protected $blog;

 /**
 * @Flow\Validate(type="NotEmpty")
 * @var string
 */
 protected $subject;

 /**
 * The creation date of this post (set in the constructor)
 *
 * @var \DateTime
 */
 protected $date;

 /**
 * @Flow\Validate(type="NotEmpty")
 * @var string
 */
 protected $author;

 /**
 * @Flow\Validate(type="NotEmpty")
 * @ORM\Column(type="text")
 * @var string
 */
 protected $content;

 /**
 * Constructs this post
 */
 public function __construct() {
 $this->date = new \DateTime();
 }

 /**
 * @return Blog
 */
 public function getBlog() {
 return $this->blog;
 }

 /**
 * @param Blog $blog
 * @return void
 */
 public function setBlog(Blog $blog) {
 $this->blog = $blog;
 $this->blog->addPost($this);
 }

 /**
 * @return string
 */
 public function getSubject() {
 return $this->subject;
 }

 /**
 * @param string $subject
 * @return void
 */
 public function setSubject($subject) {
 $this->subject = $subject;
 }

 /**
 * @return \DateTime
 */
 public function getDate() {
 return $this->date;
 }

 /**
 * @param \DateTime $date
 * @return void
 */
 public function setDate(\DateTime $date) {
 $this->date = $date;
 }

 /**
 * @return string
 */
 public function getAuthor() {
 return $this->author;
 }

 /**
 * @param string $author
 * @return void
 */
 public function setAuthor($author) {
 $this->author = $author;
 }

 /**
 * @return string
 */
 public function getContent() {
 return $this->content;
 }

 /**
 * @param string $content
 * @return void
 */
 public function setContent($content) {
 $this->content = $content;
 }

}

Blog Repository

According to our earlier statements regarding “Modeling”, you need a repository for storing the blog:

[image: Blog Repository and Blog]
Blog Repository and Blog

A repository acts as the bridge between the holy lands of business logic
(domain models) and the dirty underground of infrastructure (data storage).
This is the only place where queries to the persistence framework take place -
you never want to have those in your domain models or controllers.

Similar to models the directory for your repositories is Classes/Acme/Blog/Domain/Repository/.
You can kickstart the repository with:

./flow kickstart:repository Acme.Blog Blog

This will generate a vanilla repository for blogs containing this code:

Classes/Acme/Blog/Domain/Repository/BlogRepository.php:

<?php
namespace Acme\Blog\Domain\Repository;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Neos\Flow\Annotations as Flow;
use Neos\Flow\Persistence\Repository;

/**
 * @Flow\Scope("singleton")
 */
class BlogRepository extends Repository {

 // add customized methods here

}

There’s no code you need to write for the standard cases because the base repository already
comes with methods like add, remove, findAll, findBy* and findOneBy* 3 methods.
But for the sake of this demonstration lets assume we plan to have multiple blogs at some time. So lets
add a findActive() method that - for now - just returns the first blog in the repository:

<?php
namespace Acme\Blog\Domain\Repository;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Acme\Blog\Domain\Model\Blog;
use Neos\Flow\Annotations as Flow;
use Neos\Flow\Persistence\Repository;

/**
 * @Flow\Scope("singleton")
 */
class BlogRepository extends Repository {

 /**
 * Finds the active blog.
 *
 * For now, only one Blog is supported anyway so we just assume that only one
 * Blog object resides in the Blog Repository.
 *
 * @return Blog The active blog or FALSE if none exists
 */
 public function findActive() {
 $query = $this->createQuery();
 return $query->execute()->getFirst();
 }

}

Remember that a repository can only store one kind of an object, in this case
blogs. The type is derived from the repository name: because you named this
repository BlogRepository Flow assumes that it’s supposed to store
Blog objects.

To finish up, open the repository for our posts (which was generated along with the Post
controller we kickstarted earlier) and add the following find methods to the generated
code:

	findByBlog() to retrieve all posts of a given blog

	findPrevious() to get the previous post within the current blog

	findNext() to get the next post within the current blog

The resulting code should look like:

Classes/Acme/Blog/Domain/Repository/PostRepository.php:

<?php
namespace Acme\Blog\Domain\Repository;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Acme\Blog\Domain\Model\Blog;
use Acme\Blog\Domain\Model\Post;
use Neos\Flow\Annotations as Flow;
use Neos\Flow\Persistence\QueryInterface;
use Neos\Flow\Persistence\QueryResultInterface;
use Neos\Flow\Persistence\Repository;

/**
 * @Flow\Scope("singleton")
 */
class PostRepository extends Repository {

 /**
 * Finds posts by the specified blog
 *
 * @param Blog $blog The blog the post must refer to
 * @return QueryResultInterface The posts
 */
 public function findByBlog(Blog $blog) {
 $query = $this->createQuery();
 return
 $query->matching(
 $query->equals('blog', $blog)
)
 ->setOrderings(array('date' => QueryInterface::ORDER_DESCENDING))
 ->execute();
 }

 /**
 * Finds the previous of the given post
 *
 * @param Post $post The reference post
 * @return Post
 */
 public function findPrevious(Post $post) {
 $query = $this->createQuery();
 return
 $query->matching(
 $query->logicalAnd([
 $query->equals('blog', $post->getBlog()),
 $query->lessThan('date', $post->getDate())
])
)
 ->setOrderings(array('date' => QueryInterface::ORDER_DESCENDING))
 ->execute()
 ->getFirst();
 }

 /**
 * Finds the post next to the given post
 *
 * @param Post $post The reference post
 * @return Post
 */
 public function findNext(Post $post) {
 $query = $this->createQuery();
 return
 $query->matching(
 $query->logicalAnd([
 $query->equals('blog', $post->getBlog()),
 $query->greaterThan('date', $post->getDate())
])
)
 ->setOrderings(array('date' => QueryInterface::ORDER_ASCENDING))
 ->execute()
 ->getFirst();
 }

}

	1

	We love to call them POPOs, similar to POJOs
http://en.wikipedia.org/wiki/Plain_Old_Java_Object

	2

	http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html#collections

	3

	findBy* and findOneBy* are magic methods provided by the base
repository which allow you to find objects by properties. The
BlogRepository for example would allow you to call magic methods
like findByDescription('foo') or findOneByTitle('bar').

Controller

Now that we have the first models and repositories in place we can almost move forward to
creating our first controller.
There are two types of controllers in Flow:

	ActionControllers are triggered by regular HTTP requests, and

	CommandControllers are usually invoked via the Command Line Interface.

Setup Controller

The SetupCommandController will be in charge of creating a Blog object, setting a title
and description and storing it in the BlogRepository:

./flow kickstart:commandcontroller Acme.Blog Blog

The kickstarter created a very basic command controller containing only one command, the exampleCommand:

Classes/Acme/Blog/Command/BlogCommandController.php:

<?php
namespace Acme\Blog\Command;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Neos\Flow\Annotations as Flow;

/**
 * @Flow\Scope("singleton")
 */
class BlogCommandController extends \Neos\Flow\Cli\CommandController {

 /**
 * An example command
 *
 * The comment of this command method is also used for Flow's help screens. The first line should give a very short
 * summary about what the command does. Then, after an empty line, you should explain in more detail what the command
 * does. You might also give some usage example.
 *
 * It is important to document the parameters with param tags, because that information will also appear in the help
 * screen.
 *
 * @param string $requiredArgument This argument is required
 * @param string $optionalArgument This argument is optional
 * @return void
 */
 public function exampleCommand($requiredArgument, $optionalArgument = NULL) {
 $this->outputLine('You called the example command and passed "%s" as the first argument.', array($requiredArgument));
 }

}

Let’s replace the example with a setupCommand that can be used to create the first blog from the command line:

Classes/Acme/Blog/Command/BlogCommandController.php:

<?php
namespace Acme\Blog\Command;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Acme\Blog\Domain\Model\Blog;
use Acme\Blog\Domain\Model\Post;
use Acme\Blog\Domain\Repository\BlogRepository;
use Acme\Blog\Domain\Repository\PostRepository;
use Neos\Flow\Annotations as Flow;
use Neos\Flow\Cli\CommandController;

/**
 * @Flow\Scope("singleton")
 */
class BlogCommandController extends CommandController {

 /**
 * @Flow\Inject
 * @var BlogRepository
 */
 protected $blogRepository;

 /**
 * @Flow\Inject
 * @var PostRepository
 */
 protected $postRepository;

 /**
 * A command to setup a blog
 *
 * With this command you can kickstart a new blog.
 *
 * @param string $blogTitle the name of the blog to create
 * @param boolean $reset set this flag to remove all previously created blogs and posts
 * @return void
 */
 public function setupCommand($blogTitle, $reset = FALSE) {
 if ($reset) {
 $this->blogRepository->removeAll();
 $this->postRepository->removeAll();
 }

 $blog = new Blog($blogTitle);
 $blog->setDescription('A blog about Foo, Bar and Baz.');
 $this->blogRepository->add($blog);

 $post = new Post();
 $post->setBlog($blog);
 $post->setAuthor('John Doe');
 $post->setSubject('Example Post');
 $post->setContent('Lorem ipsum dolor sit amet, consectetur adipisicing elit.' . chr(10) . 'Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.');
 $this->postRepository->add($post);

 $this->outputLine('Successfully created a blog "%s"', [$blogTitle]);
 }

}

You can probably figure out easily what the setupCommand does – it empties the BlogRepository and
PostRepository if the --reset flag is set, creates a new Blog object and adds it to the BlogRepository.
In addition a sample blog post is created and added to the PostRepository and blog. Note that if you had omitted the
lines:

$this->blogRepository->add($blog);

and

$this->postRepository->add($post);

the blog and the post would have been created in memory but not persisted to
the database.

Using the blog and post repository sounds plausible, but where do you get the
repositories from?

Classes/Acme/Blog/Command/BlogCommandController.php:

/**
 * @Flow\Inject
 * @var BlogRepository
 */
protected $blogRepository;

The property declarations for $blogRepository (and $postRepository) is marked with
an Inject annotation. This signals to the object framework: I need the blog
repository here, please make sure it’s stored in this member variable. In effect Flow
will inject the blog repository into the $blogRepository property right after your
controller has been instantiated. And because the blog repository’s scope is singleton
1, the framework will always inject the same instance of the repository.

There’s a lot more to discover about Dependency Injection and we recommend
that you read the whole chapter on objects in Part III: Manual once you
start with your own coding.

To create the required database tables we now use the command line support to generate the
tables for our package:

./flow doctrine:migrationgenerate

Do you want to move the migration to one of these Packages?
 [0] Don't Move
 [1] Neos.Eel
 [2] Neos.Flow
 [3] Neos.Fluid
 [3] Neos.Kickstart
 [4] Neos.Welcome
 [5] Acme.Blog

Hit a key to move the new migration to the Acme.Blog package (in this example key “5”) and press <ENTER>.
You will now find the generated migration in Migrations/Mysql/Version<YYYYMMDDhhmmss>.php.
Whenever you auto-generate a migration take a few minutes to verify that it contains (only) the changes you want
to apply. In this case the migration should look like this:

<?php
namespace Neos\Flow\Persistence\Doctrine\Migrations;

use Doctrine\DBAL\Migrations\AbstractMigration,
 Doctrine\DBAL\Schema\Schema;

/**
 * Initial migration, creating tables for the "Blog" and "Post" domain models
 */
class Version20150714161019 extends AbstractMigration {

 /**
 * @param Schema $schema
 * @return void
 */
 public function up(Schema $schema) {
 $this->abortIf($this->connection->getDatabasePlatform()->getName() != "mysql");

 $this->addSql("CREATE TABLE acme_blog_domain_model_blog (persistence_object_identifier VARCHAR(40) NOT NULL, title VARCHAR(80) NOT NULL, description VARCHAR(150) NOT NULL, PRIMARY KEY(persistence_object_identifier)) DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci ENGINE = InnoDB");
 $this->addSql("CREATE TABLE acme_blog_domain_model_post (persistence_object_identifier VARCHAR(40) NOT NULL, blog VARCHAR(40) DEFAULT NULL, subject VARCHAR(255) NOT NULL, date DATETIME NOT NULL, author VARCHAR(255) NOT NULL, content LONGTEXT NOT NULL, INDEX IDX_EF2000AAC0155143 (blog), PRIMARY KEY(persistence_object_identifier)) DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci ENGINE = InnoDB");
 $this->addSql("ALTER TABLE acme_blog_domain_model_post ADD CONSTRAINT FK_EF2000AAC0155143 FOREIGN KEY (blog) REFERENCES acme_blog_domain_model_blog (persistence_object_identifier)");
 }

 /**
 * @param Schema $schema
 * @return void
 */
 public function down(Schema $schema) {
 $this->abortIf($this->connection->getDatabasePlatform()->getName() != "mysql");

 $this->addSql("ALTER TABLE acme_blog_domain_model_post DROP FOREIGN KEY FK_EF2000AAC0155143");
 $this->addSql("DROP TABLE acme_blog_domain_model_blog");
 $this->addSql("DROP TABLE acme_blog_domain_model_post");
 }
}

Now you can execute all pending migrations to update the database schema:

./flow doctrine:migrate

And finally you can try out the setupCommand:

./flow blog:setup "My Blog"

and the CLI should respond with:

Successfully created a blog "My Blog"

This is all we need for moving on to something more visible: the blog posts.

Basic Post Controller

Now let us add some more code to …/Classes/Acme/Blog/Controller/PostController.php:

<?php
namespace Acme\Blog\Controller;

/* *
 * This script belongs to the Flow package "Acme.Blog". *
 * *
 * */

use Acme\Blog\Domain\Repository\BlogRepository;
use Acme\Blog\Domain\Repository\PostRepository;
use Neos\Flow\Annotations as Flow;
use Neos\Flow\Mvc\Controller\ActionController;
use Acme\Blog\Domain\Model\Post;

class PostController extends ActionController {

 /**
 * @Flow\Inject
 * @var BlogRepository
 */
 protected $blogRepository;

 /**
 * @Flow\Inject
 * @var PostRepository
 */
 protected $postRepository;

 /**
 * Index action
 *
 * @return string HTML code
 */
 public function indexAction() {
 $blog = $this->blogRepository->findActive();
 $output = '
 <h1>Posts of "' . $blog->getTitle() . '"</h1>
 ';

 foreach ($blog->getPosts() as $post) {
 $output .= '' . $post->getSubject() . '';
 }

 $output .= '';

 return $output;
 }

 // ...

}

The indexAction retrieves the active blog from the BlogRepository and
outputs the blog’s title and post subject lines 2. A quick look
at http://dev.tutorial.local/acme.blog/post 3 confirms that the
SetupController has indeed created the blog and post:

[image: Output of the indexAction]
Output of the indexAction

Create Action

In the SetupController we have seen how a new blog and a post can be
created and filled with some hardcoded values. At least the posts should,
however, be filled with values provided by the blog author, so we need to pass
the new post as an argument to a createAction in the PostController:

Classes/Acme/Blog/Controller/PostController.php:

// ...

/**
 * Creates a new post
 *
 * @param Post $newPost
 * @return void
 */
public function createAction(Post $newPost) {
 $this->postRepository->add($newPost);
 $this->addFlashMessage('Created a new post.');
 $this->redirect('index');
}

The createAction expects a parameter $newPost which is the Post object
to be persisted. The code is quite straight-forward: add the post to the repository,
add a message to some flash message stack and redirect to the index action.
Try calling the createAction now by accessing
http://dev.tutorial.local/acme.blog/post/create:

[image: Create action called without argument]
Create action called without argument

Flow analyzed the new method signature and automatically registered $newPost as a
required argument for createAction. Because no such argument was
passed to the action, the controller exits with an error.

So, how do you create a new post? You need to create some HTML form which
allows you to enter the post details and then submits the information to the
createAction. But you don’t want the controller rendering such a
form – this is clearly a task for the view!

	1

	Remember, prototype is the default object scope and because the
BlogRepository does contain a Scope annotation, it has the
singleton scope instead.

	2

	Don’t worry, the action won’t stay like this – of course later we’ll
move all HTML rendering code to a dedicated view.

	3

	The acme.blog stands for the package Acme.Blog and post specifies the
controller PostController.

View

The view’s responsibility is solely the visual presentation of data provided by
the controller. In Flow views are cleanly decoupled from the rest of the MVC framework.
This allows you to either take advantage of Fluid (Flow’s template engine), write
your own custom PHP view class or use almost any other template
engine by writing a thin wrapper building a bridge between Flow’s interfaces
and the template engine’s functions.
In this tutorial we focus on Fluid-based templates as this is what you usually want to use.

Resources

Before we design our first Fluid template we need to spend a thought on the
resources our template is going to use (I’m talking about all the images, style
sheets and javascript files which are referred to by your HTML code).
You remember that only the Web directory is accessible from the web, right?
And the resources are part of the package and thus hidden from the public.
That’s why Flow comes with a powerful resource manager whose main task is to
manage access to your package’s resources.

The deal is this: All files which are located in the public resources directory
of your package will automatically be mirrored to somewhere that is publicly accessible.
By default, Flow just symlinks those files to the public resources directory below the
Web folder.

Let’s take a look at the directory layout of
the Acme.Blog package:

Directory structure of a Flow package

	Directory

	Description

	Classes/

	All the .php class files of your package

	Documentation/

	The package’s manual and other documentation

	Resources/

	Top folder for resources

	Resources/Public/

	Public resources - will be mirrored to the Web directory

	Resources/Private/

	Private resources - won’t be mirrored to the Web directory

No matter what files and directories you create below Resources/Public/ - all
of them will, by default, be symlinked to Web/_Resources/Static/Packages/Acme.Blog/ on
the next hit.

Tip

There are more possible directories in a package and we do have some
conventions for naming certain sub directories. All that is explained in
fine detail in Part III.

Important

For the blog example in this tutorial we created some style sheet to make it more appealing.
If you’d like the examples to use those styles, then it’s time to copy Resources/Public/
from the git repository (https://github.com/neos/Acme.Blog)
to your blog’s public resources folder (Packages/Application/Acme.Blog/Resources/Public/).

Layouts

Fluid knows the concepts of layouts, templates and partials. Usually all of
them are just plain HTML files which contain special tags known by the Fluid
template view. The following figure illustrates the use of layout, template and
partials in our blog example:

[image: Layout, Template and Partial]
Layout, Template and Partial

A Fluid layout provides the basic layout of the output which is supposed to be
shared by multiple templates. You will use the same layout throughout this
tutorial - only the templates will change depending on the current controller
and action. Elements shared by multiple templates can be extracted as a partial
to assure consistency and avoid duplication.

Let’s build a simple layout for your blog. You only need to adjust the file called
Default.html inside the Acme.Blog/Resources/Private/Layouts directory to contain
the following code:

Resources/Private/Layouts/Default.html:

<!DOCTYPE html>
<html>
<head lang="en">
 <meta charset="utf-8">
 <title>{blog.title} - Flow Blog Example</title>
 <link rel="stylesheet" href="../../Public/Styles/App.css" type="text/css" />
</head>
<body>

 <header>
 <f:if condition="{blog}">
 <f:link.action action="index" controller="Post">
 <h1>{blog.title}</h1>
 </f:link.action>
 <p class="description">{blog.description -> f:format.crop(maxCharacters: 80)}</p>
 </f:if>
 </header>

 <div id="content">
 <f:flashMessages class="flashmessages" />
 <f:render section="MainContent" />
 </div>

 <footer>

 Powered by Flow

 </footer>

</body>
</html>

Tip

If you don’t want to download the stylesheet mentioned above, you can import it directly from the
github repository, replacing ../../Public/Styles./App.css` with
https://raw.githubusercontent.com/neos/Acme.Blog/master/Resources/Public/Styles/App.css
Of course you can also just remove the whole <link rel="stylesheet" ... line if you don’t care
about style.

On first sight this looks like plain HTML code, but you’ll surely notice the
various <f: ... > tags. Fluid provides a range of view helpers which are
addressed by these tags. By default they live in the f namespace resulting
in tags like <f:if> or <f:link.action>. You can define your own namespaces
and even develop your own view helpers, but for now let’s look at what you used
in your layout:

The first thing to notice is <f:if>, a Fluid tag in <body>. This tag
instructs Fluid to render its content only if its condition is true. In this case,
condition="{blog}" tells the <f:if> tag to render only if blog is set.

Look at that condition again, noting the curly braces: {blog}. This is a variable
accessor. It is very similar to some Fluid markup that we skipped over in <head>:

Resources/Private/Layouts/Default.html:

<title>{blog.title} - Flow Blog Example</title>

As you will see in a minute, Fluid allows your controller to define variables
for the template view. In order to display the blog’s name, you’ll need to make
sure that your controller assigns the current Blog object to the template
variable blog. The value of such a variable can be inserted anywhere in
your layout, template or partial by inserting the variable name wrapped by
curly braces. However, in the above case blog is not a value you can output
right away – it’s an object. Fortunately Fluid can display properties of an
object which are accessible through a getter function: to display the blog
title, you just need to note down {blog.title} and Fluid will internally call
the getTitle() method of the Blog instance.

We’ve looked at two kinds of Fluid syntax: tag-style view helpers (<f:if>),
and variable accessors ({blog.title}). Another kind of Fluid syntax is an
alternative way to address view helpers, the view helper shorthand syntax:

Resources/Private/Layouts/Default.html:

{blog.description -> f:format.crop(maxCharacters: 80)}

{f:format.crop(...)}` instructs Fluid to crop the given value (in this case the
Blog’s description). With the maxCharacters argument the description will be
truncated if it exceeds the given number of characters. The generated HTML code
will look something like this:

Resources/Private/Layouts/Default.html:

This is a very long description that will be cropped if it exceeds eighty charac...

If you look at the remaining markup of the layout you’ll find more uses of view
helpers, including flashMessages. It generates an unordered list with
all flash messages. Well, maybe you remember this line in the createAction
of our PostController:

$this->addFlashMessage('Created a new post.');

Flash messages are a great way to display success or error messages to
the user beyond a single request. And because they are so useful, Flow provides a
FlashMessageContainer with some helper methods and Fluid offers the flashMessages
view helper. Therefore, if you create a new post, you’ll see the message Your new post was
created at the top of your blog index on the next hit.

There’s only one view helper you need to know about before proceeding with our first template,
the render view helper:

Resources/Private/Layouts/Default.html:

<f:render section="MainContent" />

This tag tells Fluid to insert the section MainContent defined in the current
template at this place. For this to work there must be a section with the
specified name in the template referring to the layout – because that’s the way
it works: A template declares which layout it is based on, defines sections
which in return are included by the layout. Confusing? Let’s look at a
concrete example.

Templates

Templates are, as already mentioned, tailored to a specific action. The action
controller chooses the right template automatically according to the current
package, controller and action - if you follow the naming conventions. Let’s
replace the automatically generated template for the Post controller’s index
action in Acme.Blog/Resources/Private/Templates/Post/Index.html with some more
meaningful HTML:

Resources/Private/Templates/Post/Index.html:

<f:layout name="Default" />

<f:section name="MainContent">
 <f:if condition="{blog.posts}">
 <f:then>

 <f:for each="{blog.posts}" as="post">
 <li class="post">
 <f:render partial="PostActions" arguments="{post: post}"/>
 <h2>
 <f:link.action action="show" arguments="{post: post}">{post.subject}</f:link.action>
 </h2>
 <f:render partial="PostMetaData" arguments="{post: post}"/>

 </f:for>

 </f:then>
 <f:else>
 <p>No posts created yet.</p>
 </f:else>
 </f:if>
 <p>
 <f:link.action action="new">Create a new post</f:link.action><
 /p>
</f:section>

There you have it: In the first line of your template there’s a reference to
the “Default” layout. All HTML code is wrapped in a <f:section> tag. Even
though this is the way you usually want to design templates, you should know
that using layouts is not mandatory – you could equally put all your code into
one template and omit the <f:layout> and <f:section> tags.

The main job of this template is to display a list of the most recent posts.
An <f:if> condition makes sure that the list of posts is only rendered if
blog actually contains posts. But currently the view doesn’t know anything
about a blog - you need to adapt the the PostController to assign the current blog:

Classes/Acme/Blog/Controller/PostController.php:

/**
 * @return void
 */
public function indexAction() {
 $blog = $this->blogRepository->findActive();
 $this->view->assign('blog', $blog);
}

To fully understand the above code you need to know two facts:

	$this->view is automatically set by the action controller and
points to a Fluid template view.

	if an action method returns NULL, the controller will automatically
call $this->view->render() after executing the action.

But soon you’ll see that we need the current Blog in all of our actions, so how to assign it
to the view without repeating the same code over and over again?
With ease: We just assign it as soon as the view is initialized:

Classes/Acme/Blog/Controller/PostController.php:

/**
 * @param ViewInterface $view
 * @return void
 */
protected function initializeView(ViewInterface $view) {
 $blog = $this->blogRepository->findActive();
 $this->view->assign('blog', $blog);
}

/**
 * @return void
 */
public function indexAction() {
}

The initializeView method is called before each action, so it provides a good opportunity
to assign values to the view that should be accessible from all actions.
But make sure only to use it for truly global values in order not to waste memory for unused data.

After creating the folder Resources/Private/Partials/ add the following two partials:

Resources/Private/Partials/PostMetaData.html:

<p class="metadata">
 Published on {post.date -> f:format.date(format: 'Y-m-d')} by {post.author}
</p>

Resources/Private/Partials/PostActions.html:

<ul class="actions">

 <f:link.action action="edit" arguments="{post: post}">Edit</f:link.action>

 <f:form action="delete" arguments="{post: post}">
 <f:form.submit name="delete" value="Delete" />
 </f:form>

The PostMetaData partial renders date and author of a post. The PostActions partial an edit link
and a button to delete the current post. Both are used as well in the list view (indexAction) as well
as in the detail view (showAction) of the post and Partials allow us to easily re-use the parts without
having to duplicate markup.

Now you should now see the list of recent posts by accessing http://dev.tutorial.local/acme.blog/post:

[image: The list of blog posts]
The list of blog posts

To create new posts and edit existing ones from the web browser, we need to create Forms:

Forms

Create a New Post

Time to create a form which allows you to enter details for a new post.
The first component you need is the newAction whose sole purpose is
displaying the form:

Classes/Acme/Blog/Controller/PostController.php:

/**
 * Displays the "Create Post" form
 *
 * @return void
 */
public function newAction() {
}

No code? What will happen is this: the action controller selects the
New.html template and assigns it to $this->view which will automatically
be rendered after newAction has been called. That’s enough for displaying
the form. The current blog is already assigned in initializeView() allowing
the blog title and description to be rendered in our header (defined in Default.html).
Otherwise those would be empty.

The second component is the actual form. Adjust the template New.html in
the Resources/Private/Templates/Post/ folder:

Resources/Private/Templates/Post/New.html:

<f:layout name="Default" />

<f:section name="MainContent">
 <h2>Create new post</h2>
 <f:form action="create" objectName="newPost">
 <f:form.hidden property="blog" value="{blog}" />

 <label for="post-author">Author</label>
 <f:form.textfield property="author" id="post-author" />

 <label for="post-subject">Subject</label>
 <f:form.textfield property="subject" id="post-subject" />

 <label for="post-content">Content</label>
 <f:form.textarea property="content" rows="5" cols="30" id="post-content" />

 <f:form.submit name="submit" value="Publish Post" />
 </f:form>
</f:section>

Here is how it works: The <f:form> view helper renders a form tag. Its
attributes are similar to the action link view helper you might have seen in
previous examples: action specifies the action to be called on submission
of the form, controller would specify the controller and package the
package respectively. If controller or package are not set, the URI
builder will assume the current controller or package respectively.
objectName finally specifies the name of the action method argument
which will receive the form values, in this case “newPost”.

It is important to know that the whole form is (usually) bound to one object
and that the values of the form’s elements become property values of
this object. In this example the form contains (property) values for a
post object. The form’s elements are named after the class properties of the
Post domain model: blog, author, subject and content.
Let’s look at the createAction again:

Note

Mind that newPost is not assigned to the view in this example. Assigning
this object is only needed if you have set default values to your model
properties. So if you for example have a protected $hidden = TRUE
definition in your model, a <f:form.checkbox property="hidden" /> will not
be checked by default, unless you instantiate $newPost in your index
action and assign it to the view.

Classes/Acme/Blog/Controller/PostController.php:

/**
 * Creates a new post
 *
 * @param Post $newPost
 * @return void
 */
public function createAction(Post $newPost) {
 $this->postRepository->add($newPost);
 $this->addFlashMessage('Created a new post.');
 $this->redirect('index');
}

It’s important that the createAction uses the type hint
Post (which expands to \Acme\Blog\Domain\Model\Post) and that it comes with a proper
@param annotation because this is how Flow determines the type to which the submitted form
values must be converted. Because this action requires a Post it gets a post (object) -
as long as the property names of the object and the form match.

Time to test your new newAction and its template – click on the little plus
sign above the first post lets the newAction render this form:

[image: Form to create a new post]
Form to create a new post

Enter some data and click the submit button:

[image: A new post has been created]
A new post has been created

You should now find your new post in the list of posts.

Edit a Post

While you’re dealing with forms you should also create form for editing an
existing post. The editAction will display this form.

This is pretty straight forward: we already added a link to each post with the PostActions.html
partial:

Resources/Private/Templates/Post/Index.html:

<ul class="actions">

 <f:link.action action="edit" arguments="{post: post}">Edit</f:link.action>

 <f:form action="delete" arguments="{post: post}">
 <f:form.submit name="delete" value="Delete" />
 </f:form>

This renders an “Edit” link that points to the editAction of the PostController.
Below is a little form with just one button that triggers the deleteAction().

Note

The reason why the deleteAction() is invoked via a form instead of a link is
because Flow follows the HTTP 1.1 specification that suggests that called “safe
request methods” (usually GET or HEAD requests) should not change the server state.
See Part III - Validation for more details.
The editAction() just displays the Post edit form, so it can be called via GET requests.

Adjust the template Templates/Post/Edit.html and insert the following HTML code:

Resources/Private/Templates/Post/Edit.html:

<f:layout name="Default" />

<f:section name="MainContent">
 <h2>Edit post "{post.subject}"</h2>
 <f:form action="update" object="{post}" objectName="post">
 <label for="post-author">Author</label>
 <f:form.textfield property="author" id="post-author" />

 <label for="post-subject">Subject</label>
 <f:form.textfield property="subject" id="post-subject" />

 <label for="post-content">Content</label>
 <f:form.textarea property="content" rows="5" cols="30" id="post-content" />

 <f:form.submit name="submit" value="Update Post" />
 </f:form>
</f:section>

Most of this should already look familiar. However, there is a tiny difference
to the new form you created earlier: in this edit form you added
object="{post}" to the <f:form> tag. This attribute binds the variable
{post} to the form and it simplifies the further definition of the
form’s elements. Each element – in our case the text box and the text
area – comes with a property attribute declaring the name of the property
which is supposed to be displayed and edited by the respective element.

Because you specified property="author" for the text box, Fluid will fetch
the value of the post’s author property and display it as the default value
for the rendered text box. The resulting input tag will also contain the
name "author" due to the property attribute you defined. The id
attribute only serves as a target for the label tag and is not required
by Fluid.

What’s missing now is a small adjustment to the PHP code displaying the edit form:

Classes/Acme/Blog/Controller/PostController.php:

/**
 * Displays the "Edit Post" form
 *
 * @param Post $post
 * @return void
 */
public function editAction(Post $post) {
 $this->view->assign('post', $post);
}

Enough theory, let’s try out the edit form in practice. A click on the edit
link of your list of posts should result in a screen similar to this:

[image: The edit form for a post]
The edit form for a post

When you submit the form you call the updateAction:

Classes/Acme/Blog/Controller/PostController.php:

/**
 * Updates a post
 *
 * @param Post $post
 * @return void
 */
public function updateAction(Post $post) {
 $this->postRepository->update($post);
 $this->addFlashMessage('Updated the post.');
 $this->redirect('index');
}

Quite easy as well, isn’t it? The updateAction expects the edited post as
its argument and passes it to the repository’s update method (note that we
used the PostRepository!). Before we disclose the secret how this magic
actually works behind the scenes try out if updating the post really works:

[image: The post has been edited]
The post has been edited

A Closer Look on Updates

Although updating objects is very simple on the user’s side (that’s where
you live), it is a bit complex on behalf of the framework. You may skip this
section if you like - but if you dare to take a quick look behind the scenes to
get a better understanding of the mechanism behind the updateAction
read on …

The updateAction expects one argument, namely the edited post. “Edited
post” means that this is a Post object which already contains the values
submitted by the edit form.

These modifications will not be persisted automatically. To persist the
changes to the post object, call the PostRepository’s update method. It schedules
an object for the dirty check at the end of the request.

If all these details didn’t scare you, you might now ask yourself how Flow
could know that the updateAction expects a modified object and not the original?
Great question. And the answer is – literally – hidden in the form generated
by Fluid’s form view helper:

<form action="/acme.blog/post/update" method="post">
 ...
 <input type="hidden" name="post[__identity]" value="7825fe4b-33d9-0522-a3f2-02833f9084ab" />
 ...
</form>

Fluid automatically renders a hidden field containing information about the
technical identity of the form’s object, if the object is an original, previously
retrieved from a repository.

On receiving a request, the MVC framework checks if a special identity field
(such as the above hidden field) is present and if further properties have been
submitted. This results in three different cases:

Create, Show, Update detection

	Situation

	Case

	Consequence

	identity missing,
properties present

	New /
Create

	Create a completely new object and
set the given properties

	identity present,
properties missing

	Show /
Delete / …

	Retrieve original object with
given identifier

	identity present,
properties present

	Edit /
Update

	Retrieve original object, and set the
given properties

Because the edit form contained both identity and properties, Flow prepared an
instance with the given properties for our updateAction.

Validation

Hopefully the examples of the previous chapters made you shudder or at least
raised some questions. Although it’s surely nice to have one-liners for actions
like create and update we need some more code to validate the incoming
values before they are eventually persisted and the outgoing content before it’s
rendered to the browser.

You won’t have to care too much about the latter if you’re using Fluid to render
your View because, because it escapes your data by default.
As a result, even if the post subject contains the string
<script>alert("danger")</script> outputting it via {post.subject} will
result in the unaesthetic but harmless
<script>alert("danger")</script>.

But most applications come with additional rules that apply to the domain model.
Maybe you want to make sure that a post subject must consist of at least 3 and
at maximum 50 characters for example.
But do you really want these checks in your action methods? Shouldn’t we
rather separate the concerns 1 of the action methods (show, create,
update, …) from others like validation, logging and security?

Fortunately Flow’s validation framework doesn’t ask you to add any additional
PHP code to your action methods. Validation has been extracted as a separated
concern which does it’s job almost transparently to the developer.

Declaring Validation Rules

When we’re talking about validation, we usually refer to validating models.
The rules defining how a model should be validated can be classified into
three types:

	Base Properties – a set of rules defining the minimum requirements
on the properties of a model which must be met before a model may
be persisted.

	Base Model – a set of rules or custom validator enforcing the
minimum requirements on the combination of properties of a model which
must be met before a model may be persisted.

	Supplemental – a set of rules defining additional requirements on
a model for a specific situation, for example for a certain
action method.

Note

Base model and supplemental rules are not covered by this tutorial.
Detailed information is available in Part III - Validation.

Rules for the base properties are defined directly in the model in form
of annotations:

Classes/Acme/Blog/Domain/Model/Post.php:

/**
 * @Flow\Validate(type="NotEmpty")
 * @Flow\Validate(type="StringLength", options={ "minimum"=3, "maximum"=50 })
 * @var string
 */
protected $subject;

/**
 * @Flow\Validate(type="NotEmpty")
 * @var string
 */
protected $author;

/**
 * @Flow\Validate(type="NotEmpty")
 * @ORM\ManyToOne(inversedBy="posts")
 * @var Blog
 */
protected $blog;

The Validate annotations define one or more validation rules which should apply to a
property. Multiple rules can be defined in dedicated lines by further Validate
annotations.

Note

Per convention, every validator allows (passes) empty values, i.e. empty strings or
NULL values. This is for achieving fields which are not mandatory, but if filled in,
must satisfy a given validation. Consider an email address field for example which
is not mandatory, but has to match an email pattern as soon as filled in.

If you want to make a field mandatory at all, use the NotEmpty validator in addition,
like in the example above.

The technical background is the acceptsEmptyValues property of the AbstractValidator,
being TRUE per default. When writing customized validators, it’s basically possible
to set this field to FALSE, however this is not generally recommended due to the convention
that every validator could principally be empty.

Tip

Flow provides a range of built-in validators which can be found in the
Flow\Validation\Validator sub package. The names used in the
type attributes are just the unqualified class names of these validators.

It is possible and very simple to program custom validators by implementing
the Neos\Flow\Validation\Validator\ValidatorInterface.
Such validators must, however, be referred to by their fully qualified
class name (i.e. including the namespace).

Make sure the above validation rules are set in your Post model, click on the
Create a new post link below the list of posts and submit the empty form. If all went fine,
you should end up again in the new post form, with the tiny difference
that the text boxes for title and author are now framed in red:

[image: Validation errors shown in form]
Validation errors shown in form

Displaying Validation Errors

The validation rules seem to be in effect but the output could be a bit more
meaningful. We’d like to display a list of error messages for exactly this case when
the form has been submitted but contained errors.

Fluid comes with a specialized view helper which allows for iterating over
validation errors, the <f:validation.results> view helper.
We’ll need validation results for the create and the update case, so let’s put the
View Helper in a new partial FormErrors:

Resources/Private/Partials/FormErrors.html:

<f:validation.results for="{for}">
 <f:if condition="{validationResults.flattenedErrors}">
 <dl class="errors">
 <f:for each="{validationResults.flattenedErrors}" key="propertyName" as="errors">
 <dt>
 {propertyName}:
 </dt>
 <dd>
 <f:for each="{errors}" as="error">{error}</f:for>
 </dd>
 </f:for>
 </dl>
 </f:if>
</f:validation.results>

And include that partial to both, the New.html and the Edit.html templates just above the
form:

Resources/Private/Templates/Post/New.html:

<f:render partial="FormErrors" arguments="{for: 'newPost'}" />
<f:form action="create" objectName="newPost">
...

and:

Resources/Private/Templates/Post/Edit.html:

<f:render partial="FormErrors" arguments="{for: 'post'}" />
<f:form action="update" object="{post}" objectName="post">
...

Similar to the <f:for> view helper <f:validation.results> defines a loop
iterating over validation errors. The attribute as is optional and if it’s
not specified (like in the above example) as="error" is assumed.

To clearly understand this addition to the template you need to know that
errors can be nested: There is a global error object containing the errors of
the different domain objects (such as newPost) which contain errors for
each property which in turn can be multiple errors per property.

After saving the modified template and submitting the empty form again you
should see some more verbose error messages:

[image: More verbose validation errors shown in form]
More verbose validation errors shown in form

Validating Existing Data

The validation rules are enforced as soon as the GET or POST arguments are mapped to the action’s arguments.
But what if you add new validation rules when there are already persisted entities that might violate these?
For example if you had created a post with a subject of “xy” and added the StringLength annotation
afterwards?

Doing so would prevent you from invoking any of the actions for that particular post.
All you will see is an error message:

Validation failed while trying to call Acme\Blog\Controller\PostController->showAction().

So the problem is that Flow tries to validate the $post argument for the
action although we don’t need a valid post at this point.
What’s important is that the post submitted to updateAction or createAction is
valid, but we don’t really care about the showAction or editAction which only displays the post or a form.

There’s a very simple remedy to this problem: don’t validate the post. With one
additional annotation the whole mechanism works as expected:

Classes/Acme/Blog/Controller/PostController.php:

/**
 * Displays a single post
 *
 * @Flow\IgnoreValidation("$post")
 * @param Post $post
 * @return void
 */
public function showAction(Post $post) {
 $this->view->assignMultiple([
 'post' => $post,
 'nextPost' => $this->postRepository->findNext($post),
 'previousPost' => $this->postRepository->findPrevious($post),
]);
}

Now the showAction can be called even though $post is not valid.
You probably want to add the same annotation to the editAction and even the deleteAction so that
invalid posts can be fixed or removed.

	1

	See also: Separation of Concerns (Wikipedia) [http://en.wikipedia.org/wiki/Separation_of_concerns]

Routing

Although the basic functions like creating or updating a post work well
already, the URIs still have a little blemish. The index of posts can only be
reached by the cumbersome address http://dev.tutorial.local/acme.blog/post
and the URL for editing a post refers to the post’s UUID instead of the
human-readable identifier.

Flow’s routing mechanism allows for beautifying these URIs by simple but
powerful configuration options.

Post Index Route

Our first task is to simplify accessing the list of posts. For that you need to
edit a file called Routes.yaml in the global Configuration/ directory
(located at the same level like the Data and Packages directories).
This file already contains a few routes which we ignore for the time being.

Please insert the following configuration at the top of the file (before the
‘Welcome’ route) and make sure that you use spaces exactly like in the example
(remember, spaces have a meaning in YAML files and tabs are not allowed):

-
 name: 'Post index'
 uriPattern: 'posts'
 defaults:
 '@package': 'Acme.Blog'
 '@controller': 'Post'
 '@action': 'index'
 '@format': 'html'

This configuration adds a new route to the list of routes (- creates a new
list item). The route becomes active if a requests matches the pattern defined
by the uriPattern. In this example the URI http://dev.tutorial.local/posts
would match.

If the URI matches, the route’s default values for package, controller action
and format are set and the request dispatcher will choose the right
controller accordingly.

Try calling http://dev.tutorial.local/posts now –
you should see the list of posts produced by the PostController’s
indexAction.

Composite Routes

As you can imagine, you rarely define only one route per package and storing
all routes in one file can easily become confusing. To keep the global
Routes.yaml clean you may define sub routes which include - if their own URI
pattern matches - further routes provided by your package.

The Flow sub route configuration for example includes further routes if
no earlier routes in Routes.yaml matched first. Only the URI part contained
in the less-than and greater-than signs will be passed to the sub routes:

##
Flow subroutes
#

-
 name: 'Flow'
 uriPattern: '<FlowSubroutes>'
 defaults:
 '@format': 'html'
 subRoutes:
 'FlowSubroutes':
 package: 'Neos.Flow'

Let’s define a similar configuration for the Blog package. Please replace
the YAML code you just inserted (the blog index route) by the following sub
route configuration:

##
Blog subroutes

-
 name: 'Blog'
 uriPattern: '<BlogSubroutes>'
 defaults:
 '@package': 'Acme.Blog'
 '@format': 'html'
 subRoutes:
 'BlogSubroutes':
 package: 'Acme.Blog'

Note

We use “BlogSubroutes” here as name for the sub routes. You can name this as you like but it has to be
the same in uriPattern and subRoutes.

For this to work you need to create a new Routes.yaml file in the
Configuration folder of your Blog package
(Packages/Application/Acme.Blog/Configuration/Routes.yaml) and paste the
route you already created:

Configuration/Routes.yaml:

#
Routes configuration for the Blog package
#

-
 name: 'Post index'
 uriPattern: 'posts'
 defaults:
 '@package': 'Acme.Blog'
 '@controller': 'Post'
 '@action': 'index'
 '@format': 'html'

Note

As the defaults for @package and @format are already defined in the parent route,
you can omit them in the sub route.

An Action Route

The URI pointing to the newAction is still http://dev.tutorial.local/acme.blog/post/new
so let’s beautify the action URIs as well by inserting a new route before the
‘Blogs’ route:

Configuration/Routes.yaml:

-
 name: 'Post actions'
 uriPattern: 'posts/{@action}'
 defaults:
 '@controller': 'Post'

Reload the post index and check out the new URI of the createAction - it’s
a bit shorter now:

[image: A nice "create" route]
A nice “create” route

However, the edit link still looks it bit ugly:

http://dev.tutorial.local/acme.blog/post/edit?post%5B__identity%5D=229e2b23-b6f3-4422-8b7a-efb196dbc88b

For getting rid of this long identifier we need the help of a new route that can handle
the post object.

Object Route Parts

Our goal is to produce an URI like:

http://dev.tutorial.local/posts/2010/01/18/post-title/edit

and use this as our edit link. That’s done by adding following route at the
top of the file:

Configuration/Routes.yaml:

-
 name: 'Single post actions'
 uriPattern: 'posts/{post}/{@action}'
 defaults:
 '@controller': 'Post'
 routeParts:
 post:
 objectType: 'Acme\Blog\Domain\Model\Post'
 uriPattern: '{date:Y}/{date:m}/{date:d}/{subject}'

The “Single post actions” route now handles all actions where a post needs to
be specified (i.e. show, edit, update and delete).

Finally, now that you copied and pasted so much code, you should try out the
new routing setup …

More on Routing

The more an application grows, the more complex routing can become and
sometimes you’ll wonder which route Flow eventually chose. One way to get
this information is looking at the log file which is by default
located in Data/Logs/System_Development.log:

[image: Routing entries in the system log]
Routing entries in the system log

More information on routing can be found in the The Definitive Guide.

Summary

Next Steps

This is the end of the Getting Started Tutorial. You now have a first
impression of what a Flow application looks like and how the most important
modules of Flow work together.

You now have two options for delving further into Flow programming:

	Start completing the missing functionality on your own and while you
do, read further parts of the Flow reference manual

	Install the finished blog example and explore its code by reading and
modifying it

If you can’t wait to see the finished blog all you need to do is:

	Delete your blog package (that is Packages/Application/ACME.Blog/) and then

	Clone the Blog package from github: https://github.com/neos/Acme.Blog

Feedback

The Flow core team is curious about getting your feedback! If you have any
questions, are stuck at some point or just want to let us know how you liked the tutorial
please join us at Slack [http://slack.neos.io/] or open a thread on
our forum [https://discuss.neos.io/].

And if you love Flow like we do, spread the word in your blog or through your
favorite social network …

Part III: Manual

	Architectural Overview

	Bootstrapping

	Package Management

	Configuration

	Object Framework

	Persistence

	HTTP Foundation

	Model View Controller

	Templating

	Validation

	Property Mapping

	Resource Management

	Routing

	Cache Framework

	Session Handling

	Command Line

	Aspect-Oriented Programming

	Security

	Internationalization & Localization Framework

	Error and Exception Handling

	Logging and Debugging (to be written)

	Signals and Slots

	Reflection

	Eel

	File Monitoring (to be written)

	Testing (to be written)

	Utility Functions

Architectural Overview

Flow is a PHP-based application framework. It is especially well-suited
for enterprise-grade applications and explicitly supports Domain-Driven
Design, a powerful software design philosophy. Convention over
configuration, Test-Driven Development, Continuous Integration and an
easy-to-read source code are other important principles we follow for
the development of Flow.

Although we created Flow as the foundation for the Neos Content
Management System, its approach is general enough to be useful as a
basis for any other PHP application. We’re happy to share the Flow
framework with the whole PHP community and are looking forward to the
hundreds of new features and enhancements contributed as packages by
other enthusiastic developers.

This reference describes all features of Flow and provides you with
in-depth information. If you’d like to get a feeling for Flow and get
started quickly, we suggest that you try out our Getting Started
tutorial first.

System Parts

The Flow framework is composed of the following submodules:

	The Flow Bootstrap takes care of configuring and initializing the
whole framework.

	The Package Manager allows you to download, install, configure and
uninstall packages.

	The ObjectManagement is in charge of building, caching and combining
objects.

	The Configuration framework reads and cascades various kinds of
configuration from different sources and provides access to it.

	The ResourceManagement module contains functions for publishing,
caching, securing and retrieving resources.

	The HTTP component is a standards-compliant implementation of a
number of RFCs around HTTP, Cookies, content negotiation and more.

	The MVC framework takes care of requests and responses and provides
you with a powerful, easy-to use Model-View-Controller
implementation.

	The Cli module provides a very easy way to implement CLI commands
using Flow, including built-in help based on code documentation.

	The Cache framework provides different kinds of caches with can be
combined with a selection of cache backends.

	The Error module handles errors and exceptions and provides utility
classes for this purpose.

	The Log module provides simple but powerful means to log any kind
of event or signal into different types of backends.

	The Signal Slot module implements the event-driven concept of
signals and slots through AOP aspects.

	The Validation module provides a validation and filtering framework
with built-in rules as well as support for custom validation of any
object.

	The Property module implements the concept of property editors and
is used for setting and retrieving object properties.

	The Reflection API complements PHP’s built-in reflection support by
advanced annotation handling and a cached reflection service.

	The AOP framework enables you to use the powerful techniques of
Aspect Oriented Programming.

	The Persistence module allows you to transparently persist your
objects following principles of Domain Driven Design.

	The Security framework enforces security policies and provides an
API for managing those.

	The Session framework takes care of session handling and storing
session information in different backends

	The I18n service manages languages and other regional settings
and makes them accessible to other packages and Flow sub packages.

	The Utility module is a library of useful general-purpose functions
for file handling, algorithms, environment abstraction and more.

If you are overwhelmed by the amount of information in this reference,
just keep in mind that you don’t need to know all of it to write your
own Flow packages. You can always come back and look up a specific
topic once you need to know about it - that’s what references are for.

But even if you don’t need to know everything, we recommend that you get
familiar with the concepts of each module and read the whole manual.
This way you make sure that you don’t miss any of the great features
Flow provides and hopefully feel inspired to produce clean and
easy-maintainable code.

Bootstrapping

This chapter outlines the bootstrapping mechanism Flow uses on each request
to initialize vital parts of the framework and the application. It explains
the built-in request handlers which effectively control the boot sequence and
demonstrates how custom request handlers can be developed and registered.

The Flow Application Context

Each request, no matter if it runs from the command line or through HTTP,
runs in a specific application context. Flow provides exactly three built-in
contexts:

	Development (default) - used for development

	Production - should be used for a live site

	Testing - is used for functional tests

The context Flow runs in is specified through the environment variable
FLOW_CONTEXT. It can be set per command at the command line or be part of the
web server configuration:

run the Flow CLI commands in production context
FLOW_CONTEXT=Production ./flow help

In your Apache configuration, you usually use:
SetEnv FLOW_CONTEXT Production

Custom Contexts

In certain situations, more specific contexts are desirable:

	a staging system may run in a Production context, but requires a different set of
credentials than the production server.

	developers working on a project may need different application specific settings
but prefer to maintain all configuration files in a common Git repository.

By defining custom contexts which inherit from one of the three base contexts,
more specific configuration sets can be realized.

While it is not possible to add new “top-level” contexts at the same level like
Production and Testing, you can create arbitrary sub-contexts, just by
specifying them like <MainContext>/<SubContext>.

For a staging environment a custom context Production/Staging may provide the
necessary settings while the Production/Live context is used on the live instance.

Each sub context inherits the configuration from the parent context, which is
explained in full detail inside the Configuration chapter.

Note

This even works recursively, so if you have a multiple-server staging
setup, you could use the context Production/Staging/Server1 and
Production/Staging/Server2 if both staging servers needed different
configuration.

Boot Sequence

There are basically two types of requests which are handled by a Flow
application:

	command line requests are passed to the flow.php script which
resides in the Scripts folder of the Flow package

	HTTP requests are first taken care of by the index.php script
in the public Web directory.

Both scripts set certain environment variables and then instantiate and run the
Neos\Flow\Core\Bootstrap class.

The bootstrap’s run() method initializes the bare minimum needed for any
kind of operation. When it did that, it determines the actual request
handler which takes over the control of the further boot sequence and
handling the request.

public function run() {
 Scripts::initializeClassLoader($this);
 Scripts::initializeSignalSlot($this);
 Scripts::initializePackageManagement($this);

 $this->activeRequestHandler = $this->resolveRequestHandler();
 $this->activeRequestHandler->handleRequest();
}

The request handler in charge executes a sequence of steps which need to be
taken for initializing Flow for the purpose defined by the specialized
request handler. Flow’s Bootstrap class provides convenience methods for
building such a sequence and the result can be customized by adding further
or removing unnecessary steps.

After initialization, the request handler takes the necessary steps to handle
the request, does or does not echo a response and finally exits the
application. Control is not returned to the bootstrap again, but a request
handler should call the bootstrap’s shutdown() method in order to cleanly
shut down important parts of the framework.

Run Levels

There are two pre-defined levels to which Flow can be initialized:

	compiletime brings Flow into a state which allows for code generation
and other low-level tasks which can only be done while Flow is not yet
fully ready for serving user requests. Compile time has only limited support
for Dependency Injection and lacks support for many other functions such as
Aspect-Oriented Programming and Security.

	runtime brings Flow into a state which is fully capable of handling user
requests and is optimized for speed. No changes to any of the code caches
or configuration related to code is allowed during runtime.

The bootstrap’s methods buildCompiletimeSequence() and
buildRuntimeSequence() conveniently build a sequence which brings Flow
into either state on invocation.

Request Handlers

A request handler is in charge of executing the boot sequence and ultimately
answering the request it was designed for. It must implement the
\Neos\Flow\Core\RequestHandlerInterface interface which,
among others, contains the following methods:

public function handleRequest();

public function canHandleRequest();

public function getPriority();

On trying to find a suitable request handler, the bootstrap asks each
registered request handler if it can handle the current request
using canHandleRequest() – and if it can,
how eager it is to do so through getPriority(). It then passes control to the
request handler which is most capable of responding to the request by
calling handleRequest().

Request handlers must first be registered in order to be considered during the
resolving phase. Registration is done in the Package class of the package
containing the request handler:

class Package extends BasePackage {

 public function boot(\Neos\Flow\Core\Bootstrap $bootstrap) {
 $bootstrap->registerRequestHandler(new \Acme\Foo\BarRequestHandler($bootstrap));
 }

}

Tip

The Flow package contains meaningful working examples for registration of
request handlers and building boot sequences. A good starting point is
the \Neos\Flow\Package class where the request handlers are
registered.

Package Management

Flow is a package-based system. In fact, Flow itself is just a package as well - but
obviously an important one. Packages act as a container for different matters: Most of
them contain PHP code which adds certain functionality, others only contain documentation
and yet other packages consist of templates, images or other resources.

Package Locations

Framework and Application Packages

Flow packages are located in a sub folder of the Packages/ directory. A typical
application (such as Neos for example) will use the core packages which are bundled with
Flow and use additional packages which are specific to the application. The framework
packages are kept in a directory called Framework while the application specific
packages reside in the Application directory. This leads to the following
folder structure:

	Configuration/

	The global configuration folder

	Data/

	The various data folders, temporary as well as persistent

	Packages/

	
	Framework/

	The Framework directory contains packages of the Flow distribution.

	Application/

	The Application directory contains your own / application specific packages.

	Libraries/

	The Libraries directory contains 3rd party packages.

Additional Package Locations

Apart from the Application, Framework and Libraries package directories you
may define your very own additional package locations by just creating
another directory in the application’s Packages directory. One
example for this is the Neos distribution, which expects packages with
website resources in a folder named Sites.

The location for Flow packages installed via Composer (as opposed to manually
placing them in a Packages/ sub folder) is determined by looking at the package
type in the manifest file. This would place a package into Packages/Acme:

"type": "neos-acme"

If you would like to use package:create to create packages of this type in
Packages/Acme instead of the default location Packages/Application, add an
entry in the Settings.yaml of the package that expects packages of that type:

Neos:
 Flow:
 package:
 packagesPathByType:
 'neos-acme': 'Acme'

Note

Packages where the type starts with typo3-flow- or neos- are considered
Flow packages and will therefore be reflected and proxied by default. We recommend
using only the neos- prefix for the type when creating new packages (but only from
Flow 3.2 upwards) as the other is deprecated and will stop working in the next major.

Package Directory Layout

The Flow package directory structure follows a certain convention which has the advantage
that you don’t need to care about any package-related configuration. If you put your files
into the right directories, everything will just work.

The directory layout inside a Flow package is as follows:

	Classes/VendorName/PackageName

	This directory contains the actual source code for the package. Package authors
are free to add (only!) class or interface files directly to this directory or add
subdirectories to organize the content as necessary. All classes or interfaces
below this directory are handled by the autoloading mechanism and will be
registered at the object manager automatically (and will thus be considered
“registered objects”).

One special file in here is the Package.php which contains the class with the
package’s bootstrap code (if needed).

	Configuration

	All kinds of configuration which are delivered with the package reside in this
directory. The configuration files are immutable and must not be changed by the
user or administrator. The most prominent configuration files are the
Objects.yaml file which may be used to configure the package’s objects and
the Settings.yaml file which contains general user-level settings.

	Documentation

	Holds the package documentation. Please refer to the Documenter’s Guide for
more details about the directories and files within this directory.

	Resources

	Contains static resources the package needs, such as library code, template files,
graphics, … In general, there is a distinction between public and private
resources.

	Private

	Contains private resources for the package. All files inside this directory
will never be directly available from the web.

	Installer/Distribution

	The files in this directory are copied to the root of a Flow installation
when the package is installed or updated via Composer [https://getcomposer.org/]. Anything in Defaults
is copied only, if the target does not exist (files are not overwritten).
Files in Essentials are overwritten and thus kept up-to-date with the
package they come from.

	Templates

	Template files used by the package should go here. If a user wants to modify
the template it will end up elsewhere and should be pointed to by some
configuration setting.

	PHP

	Should hold any PHP code that is an external library which should not be
handled by the object manager (at least not by default), is of procedural
nature or doesn’t belong into the classes directory for any other reason.

	Java

	Should hold any Java code needed by the package. Repeat and rinse for
Smalltalk, Modula, Pascal, … ;)

	Public

	Contains public resources for the package. All files in this directory
will be mirrored into Flow’s Web directory by the ResourceManager
(and therefore become accessible from the web). They will be delivered to
the client directly without further processing.

Although it is up to the package author to name the directories, we suggest the
following directories:

	Images

	Styles

	Scripts

The general rule for this is: The folder uses the plural form of the resource type
it contains.

Third party bundles that contain multiple resources such as jQuery UI or Twitter Bootstrap
should reside in a sub directory Libraries.

	Tests

	
	Unit

	Holds the unit tests for the package.

	Functional

	Holds the functional tests for the package.

As already mentioned, all classes which are found in the Classes directory will be
detected and registered. However, this only works if you follow the naming rules equally
for the class name as well as the filename. An example for a valid class name is
\MyCompany\MyPackage\Controller\StandardController while the file containing this
class would be named StandardController.php and is expected to be in a directory
MyCompany.MyPackage/Classes/MyCompany/MyPackage/Controller.

All details about naming files, classes, methods and variables correctly can be found in
the Flow Coding Guidelines. You’re highly encouraged to read (and follow) them.

Package Keys

Package keys are used to uniquely identify packages and provide them with a namespace for
different purposes. They save you from conflicts between packages which were provided by
different parties.

We use vendor namespaces for package keys, i.e. all packages which are released
and maintained by the Neos and Flow core teams start with Neos.* (for historical
reasons) or Neos.*. In your company we suggest that you use your company name as vendor
namespace.

To define the package key for your package we recommend you set the “extra.neos.package-key”
option in your composer.json as in the following example:

composer.json:

"extra": {
 "neos": {
 "package-key": "Vendor.PackageKey"
 }
}

Loading Order

The loading order of packages follows the dependency chain as defined in the composer
manifests involved, solely taking the “require” part into consideration.
Additionally you can configure packages that should be loaded before by adding an array
of composer package names to “extra.neos.loading-order.after” as in this example:

composer.json:

"extra": {
 "neos": {
 "loading-order": {
 "after": [
 "some/package"
]
 }
 }
}

Activating and Deactivating Packages

All directories which are found below the Packages folder can hold
packages. Just make sure that you created a composer.json file in the
root directory of your package.

If no PackageStates.php exists in your Configuration folder, it will be created
and all found packages will be activated. If PackageStates.php exists, you can use the
package manager to activate and deactivate packages through the Flow command line script.

The Flow command line interface is triggered through the flow script
in the main directory of the Flow distribution. From a Unix
shell you should be able to run the script by entering ./flow (on windows,
use flow.bat).

To activate a package, use the package:activate command:

$./flow package:activate <PackageKey>

To deactivate a package, use package:deactivate. For a listing of all packages
(active and inactive) use package:list.

Note

We discourge using this feature. It is available for historical reasons and might
stay around for a while, but might be deprecated and removed in the future. Our
best practice is to remove packages that are not needed.

Installing a Package

There are various ways of installing packages. They can just be copied to a folder in
Packages/, either manually or by some tool, or by keeping them in your project’s
VCS tool (directly or indirectly, via git submodules or svn:externals).

The true power of dependency management comes with the use of Composer [https://getcomposer.org/], though.
Installing a package through composer allows to install dependencies of that package
automatically as well. That is why we suggest only using composer to install packages.

If a package you would like to add is available on Packagist [https://packagist.org/] it can be installed
by running:

composer require <vendor/package>

Note

If you need to install Composer [https://getcomposer.org/] first, read the installation instructions [http://getcomposer.org/download/]

In case a package is not available through Packagist [https://packagist.org/], you can still install via Composer [https://getcomposer.org/]
as it supports direct fetching from popular SCM system. For this, define a repository entry
in your manifest to be able to use the package name as usual in the dependencies.

composer.json:

"repositories": [
 {
 "type": "git",
 "url": "git://github.com/acme/demo.git"
 },
 …
],
…
"require": {
 …,
 "acme/demo": "dev-master"
}

Creating a New Package

Use the package:create command to create a new package:

$./flow package:create Acme.Demo

This will create the package in Packages/Application. After that, adjust composer.json
to your needs. Apart from that no further steps are necessary.

Updating Packages

The packages installed via Composer [https://getcomposer.org/] can be updated with the command:

composer update

Package Meta Information

All packages need to provide some meta information to Flow. The data is split in two
files, depending on primary use.

composer.json

The Composer [https://getcomposer.org/] manifest. It declares metadata like the name of a package as well
as dependencies, like needed PHP extensions, version constraints and other packages.
For details on the format and possibilities of that file, have a look at the Composer [https://getcomposer.org/]
documentation.

Classes/VendorName/PackageName/Package.php

This file contains bootstrap code for the package. If no bootstrap code is needed,
it does not need to exist.

Example: Minimal Package.php

<?php
namespace Acme\Demo;

use Neos\Flow\Package\Package as BasePackage;

/**
 * The Acme.Demo Package
 *
 */
class Package extends BasePackage {

 /**
 * Invokes custom PHP code directly after the package manager has been initialized.
 *
 * @param \Neos\Flow\Core\Bootstrap $bootstrap The current bootstrap
 * @return void
 */
 public function boot(\Neos\Flow\Core\Bootstrap $bootstrap) {
 $bootstrap->registerRequestHandler(new \Acme\Demo\Quux\RequestHandler($bootstrap));

 $dispatcher = $bootstrap->getSignalSlotDispatcher();
 $dispatcher->connect(\Neos\Flow\Mvc\Dispatcher::class, 'afterControllerInvocation', \Acme\Demo\Baz::class, 'fooBar');
 }
}
?>

The bootstrap code can be used to wire some signal to a slot or to register
request handlers (as shown above), or anything else that can must be done
early the bootstrap stage.

After creating a new Package.php in your package you need to execute:

$./flow flow:package:rescan

Otherwise the Package.php will not be found.

Using Third Party Packages

When using 3rd party packages via Composer [https://getcomposer.org/] everything should work as expected.
Flow uses the Composer [https://getcomposer.org/] autoloader to load code.
Third party packages will not have any Flow “magic” enabled by default. That means
no AOP will work on classes from third party packages. If you need this see Enabling Other Package Classes For Object Management

Configuration

Configuration is an important aspect of versatile applications. Flow provides you with
configuration mechanisms which have a small footprint and are convenient to use and
powerful at the same time. Hub for all configuration is the configuration manager which
handles alls configuration tasks like reading configuration, configuration cascading, and
(later) also writing configuration.

File Locations

There are several locations where configuration files may be placed. All of them are
scanned by the configuration manager during initialization and cascaded into a single
configuration tree. The following locations exist (listed in the order they are loaded,
i.e. later values override prior ones):

	/Packages/<PackageDirectoryAndName>/Configuration/

	The Configuration directory of each package is scanned first. Only at this stage new
configuration options must be introduced (by defining a default value).

	/Configuration/

	Configuration in the global Configuration directory overrides the default settings
defined in the package’s configuration directories.

	/Packages/<PackageDirectoryAndName>/Configuration/<ApplicationContext>/

	There may exist a subdirectory for each application context (see Flow Bootstrap
section). This configuration is only loaded if Flow runs in the respective
application context.

	/Configuration/<ApplicationContext>/

	The context specific configuration again overrides the generic settings.

The configuration manager also considers custom contexts, such as Production/Live.
First, the base configuration is loaded, followed by the context specific configuration
for Production and Production/Live.

Flow’s configuration system does not support placing configuration files anywhere except
for in Configuration/ or one of the context directories in Configuration/. Flow
only supports three top-level contexts: Production, Development, and Testing. These
folders are reserved for the Flow configuration system.

Configuration Files

Flow distinguishes between different types of configuration. The most important type of
configuration are the settings, however other configuration types exist for special
purposes.

The configuration format is YAML and the configuration options of each type are
defined in their own dedicated file:

	Settings.yaml

	Contains user-level settings, i.e. configuration options the users or administrators
are meant to change. Settings are the highest level of system configuration.
Settings have Split configuration sources enabled.

	Routes.yaml

	Contains routes configuration. This routing information is parsed and used by the MVC
Web Routing mechanism. Refer to the Routing chapter for more information.

	Objects.yaml

	Contains object configuration, i.e. options which configure objects and the
combination of those on a lower level. See the Object Framework chapter for more
information.

	Policy.yaml

	Contains the configuration of the security policies of the system. See the Security
chapter for details.

	PackageStates.php

	Contains a list of packages and their current state, for example if they are active
or not. Don’t edit this file directly, rather use the flow command line tool do
activate and deactivate packages.

	Caches.yaml

	Contains a list of caches which are registered automatically. Caches defined in this
configuration file are registered in an early stage of the boot process and profit
from mechanisms such as automatic flushing by the File Monitor. See the chapter about
the Cache Framework for details.

	Views.yaml

	Contains configurations for Views, for example the lookup paths for templates.
See the Model View Controller chapter for details.

Defining Configuration

Configuration Format

The format of Flow’s configuration files is YAML. YAML is a well-readable format which is
especially well-suited for defining configuration. The full specification among with many
examples can be found on the YAML website [http://www.yaml.org/]. All important parts of the YAML
specification are supported by the parser used by Flow, it might happen though that some
exotic features won’t have the desired effect. At best you look at the configuration files
which come with the Flow distribution for getting more examples.

Example: a package-level Settings.yaml

#
Settings Configuration for the Neos.Viewhelpertest Package
#

Neos:
 Viewhelpertest:
 includeViewHelpers: [alias, base]

 xhprof:
 rootDirectory: '' # path to the XHProf library
 outputDirectory: '%FLOW_PATH_DATA%Temporary/Viewhelpertest/XHProf/' # output directory

 profilingTemplatesDirectory: '%FLOW_PATH_DATA%Temporary/Viewhelpertest/Fluidtemplates/'

Warning

Always use two spaces for indentation in YAML files. The parser will not
accept indentation using tabs.

Constants and Environment

Sometimes it is necessary to use values in your configuration files which are defined as
PHP constants or are environment variables. These values can be included by special markers
which are replaced by the actual value during parse time. The format is %<CONSTANT_NAME>%
where <CONSTANT_NAME> is the name of a constant or %env:<ENVIRONMENT_VARIABLE>.
Note that the constant or environment variable name must be all uppercase.

Some examples:

	%FLOW_PATH_WEB%

	Will be replaced by the path to the public web directory.

	%FLOW_PATH_DATA%

	Will be replaced by the path to the /Data/ directory.

	%PHP_VERSION%

	Will be replaced by the current PHP version.

	%Neos\Flow\Core\Bootstrap::MINIMUM_PHP_VERSION%

	Will be replaced by this class constant’s value. Note that
a leading namespace backslash is generally allowed as of PHP,
but is not recommended due to CGL (stringed class names should not
have a leading backslash).

	%env:HOME%

	Will be replaced by the value of the “HOME” environment variable.

Custom Configuration Types

Custom configuration types allow to extract parts of the system configuration into
separate files.

The following will register a new type Views for configuration, using the default
configuration processing handler. The code needs to be in your Package``s ``boot()
method.

Example: Register a custom configuration type

$dispatcher = $bootstrap->getSignalSlotDispatcher();
$dispatcher->connect(\Neos\Flow\Configuration\ConfigurationManager::class, 'configurationManagerReady',
 function ($configurationManager) {
 $configurationManager->registerConfigurationType('Views');
 }
);

This will allow to use the new configuration type Views in the same way as the other types
supported by Flow natively, as soon as you have a file named Views.yaml in your configuration
folder(s). See Working with other configuration for details.

If you want to use a specific configuration processing type, you can pass it when registering
the configuration. The supported types are defined as CONFIGURATION_PROCESSING_TYPE_*
constants in ConfigurationManager.

Example: Register a custom configuration type

$dispatcher = $bootstrap->getSignalSlotDispatcher();
$dispatcher->connect(\Neos\Flow\Configuration\ConfigurationManager::class, 'configurationManagerReady',
 function ($configurationManager) {
 $configurationManager->registerConfigurationType(
 'CustomObjects',
 ConfigurationManager::CONFIGURATION_PROCESSING_TYPE_OBJECTS
);
 }
);

Split configuration sources

For custom types it is possible to allow for split configuration sources. For the YAML
source used in Flow it allows to use the configuration type as a prefix for the
configuration filenames.

Example: Register a custom configuration type, split-source

$dispatcher = $bootstrap->getSignalSlotDispatcher();
$dispatcher->connect(\Neos\Flow\Configuration\ConfigurationManager::class, 'configurationManagerReady',
 function (ConfigurationManager $configurationManager) {
 $configurationManager->registerConfigurationType(
 'Models',
 ConfigurationManager::CONFIGURATION_PROCESSING_TYPE_DEFAULT,
 TRUE
);
 }
);

The above code will lead to the following files being read, sorted by name and merged if the
configuration of type Models is requested:

Configuration/
 Models.yaml
 Models.Foo.yaml
 Models.Bar.yaml
 Models.Quux.yaml

Note

Split configuration is only supported for the CONFIGURATION_PROCESSING_TYPE_DEFAULT and
CONFIGURATION_PROCESSING_TYPE_SETTINGS processing types.

Accessing Settings

In almost all cases, Flow will automatically provide you with the right configuration.

What you usually want to work with are settings, which are application-specific to
your package. The following example demonstrates how to let Flow inject the settings
of a classes’ package and output some option value:

Example: Settings Injection

Acme:
 Demo:
 administrator:
 email: 'john@doe.com'
 name: 'John Doe'

namespace Acme\Demo;

class SomeClass {

 /**
 * @var array
 */
 protected $settings;

 /**
 * Inject the settings
 *
 * @param array $settings
 * @return void
 */
 public function injectSettings(array $settings) {
 $this->settings = $settings;
 }

 /**
 * Outputs some settings of the "Demo" package.
 *
 * @return void
 */
 public function theMethod() {
 echo ($this->settings['administrator']['name']);
 echo ($this->settings['administrator']['email']);
 }
}

Note

Injecting all settings creates tight coupling to the settings. If you only need
a few settings you might want to inject those specifically with the Inject
annotation described below.

Injection of single settings into properties

Flow provides a way to inject specific settings through the InjectConfiguration annotation directly into your
properties.
The annotation provides three optional attributes related to configuration injection:

	package specifies the package to get the configuration from. Defaults to the package the current class belongs to.

	path specifies the path to the setting that should be injected. If it’s not set all settings of the current (or

	type one of the ConfigurationManager::CONFIGURATION_TYPE_* constants to define where the configuration is fetched
from, defaults to ConfigurationManager::CONFIGURATION_TYPE_SETTINGS.

Note

As a best-practice for testing and extensibility you should also provide setters for
any setting you add to your class, although this is not required for the injection
to work.

Example: single setting injection

Acme:
 Demo:
 administrator:
 name: 'John Doe'
SomeOther:
 Package:
 email: 'john@doe.com'

namespace Acme\Demo;

use Neos\Flow\Annotations as Flow;

class SomeClass {

 /**
 * @Flow\InjectConfiguration(path="administrator.name")
 * @var string
 */
 protected $name;

 /**
 * @Flow\InjectConfiguration(package="SomeOther.Package", path="email")
 * @var string
 */
 protected $email;

 /**
 * @Flow\InjectConfiguration(package="SomeOther.Package")
 * @var array
 */
 protected $someOtherPackageSettings = array();

 /**
 * Overrides the name
 *
 * @param string $name
 * @return void
 */
 public function setName($name) {
 $this->name = $name;
 }

 /**
 * Overrides the email
 *
 * @param string $email
 * @return void
 */
 public function setEmail($email) {
 $this->email = $email;
 }
}

Working with other configuration

Although infrequently necessary, it is also possible to retrieve options of the more
special configuration types. The ConfigurationManager provides a method called
getConfiguration() for this purpose. The result this method returns depends on the
actual configuration type you are requesting.

Bottom line is that you should be highly aware of what you’re doing when working with
these special options and that they might change in a later version of Flow. Usually
there are much better ways to get the desired information (e.g. ask the Object Manager for
object configuration).

Configuration Cache

Parsing the YAML configuration files takes a bit of time which remarkably slows down the
initialization of Flow. That’s why all configuration is cached by default, the
configuration manager will compile all loaded configuration into a PHP file which will be
loaded in subsequent calls instead of parsing the YAML files again.

Changes to the configuration are detected and the cache is flushed when needed. In order to
flush caches manually (should that be needed), use the following command:

$./flow flow:cache:flush

Configuration Validation

Errors in configuration can lead to hard to spot errors and seemingly random
weird behavior. Flow therefore comes with a general purpose array validator
which can check PHP arrays for validity according to some schema.

This validator is used in the configuration:validate command:

$./flow configuration:validate --type Settings
Validating configuration for type: "Settings"

16 schema files were found:
 - package:"Neos.Flow" schema:"Settings/Neos.Flow.aop" -> is valid
…
 - package:"Neos.Flow" schema:"Settings/Neos.Flow.utility" -> is valid

The configuration is valid!

See the command help for details on how to use the validation.

Writing Schemata

The schema format is adapted from the JSON Schema standard [http://json-schema.org];
currently the Parts 5.1 to 5.25 of the json-schema specification are implemented,
with the following deviations from the specification:

	The “type” constraint is required for all properties.

	The validator only executes the checks that make sense for a specific type,
see list of possible constraints below.

	The “format” constraint for string type has additional class-name and
instance-name options.

	The “dependencies” constraint of the spec is not implemented.

	Similar to “patternProperties” “formatProperties” can be specified specified
for dictionaries

Warning

While the configuration:validate command will stay like it is, the inner workings
of the schema validation are still subject to change. The location of schema files
and the syntax might be adjusted in the future, as we (and you) gather real-world
experience with this.

With that out of the way: feel free to create custom schemata and let us know
of any issues you find or suggestion you have!

The schemas are searched in the path Resources/Private/Schema of all active
Packages. The schema-filenames must match the pattern
<type>.<path>.schema.yaml. The type and/or the path can also be expressed
as subdirectories of Resources/Private/Schema. So
Settings/Neos/Flow.persistence.schema.yaml will match the same paths as
Settings.Neos.Flow.persistence.schema.yaml or
Settings/Neos.Flow/persistence.schema.yaml.

Here is an example of a schema, from Neos.Flow.core.schema.yaml:

type: dictionary
additionalProperties: FALSE
properties:
 'context': { type: string, required: TRUE }
 'phpBinaryPathAndFilename': { type: string, required: TRUE }

It declares the constraints for the Neos.Flow.core setting:

	the setting is a dictionary (an associative array in PHP nomenclature)

	properties not defined in the schema are not not allowed

	the properties context and phpBinaryPathAndFilename are both required
and of type string

General constraints for all types (for implementation see validate method in
SchemaValidator):

	type

	disallow

	enum

Additional constraints allowed per type:

	string

	pattern, minLength, maxLength, format(date-time|date|time|uri|email|ipv4|ipv6|ip-address|host-name|class-name|interface-name)

	number

	maximum, minimum, exclusiveMinimum, exclusiveMaximum, divisibleBy

	integer

	maximum, minimum, exclusiveMinimum, exclusiveMaximum, divisibleBy

	boolean

	–

	array

	minItems, maxItems, items

	dictionary

	properties, patternProperties, formatProperties, additionalProperties

	null

	–

	any

	–

Object Framework

The lifecycle of objects are managed centrally by the object framework. It offers
convenient support for Dependency Injection and provides some additional features such as
a caching mechanism for objects. Because all packages are built on this foundation it is
important to understand the general concept of objects in Flow.
Note, the object management features of Flow are by default only enabled for classes in
packages belonging to one of the neos-*` package types. All other classes are not
considered by default. If you need that (see Enabling Other Package Classes For Object Management).

Tip

A very good start to understand the idea of Inversion of Control and Dependency
Injection is reading Martin Fowler’s article [http://martinfowler.com/articles/injection.html] on the topic.

Creating Objects

In simple, self-contained applications, creating objects is as simple as using the new
operator. However, as the program gets more complex, a developer is confronted with
solving dependencies to other objects, make classes configurable (maybe through a factory
method) and finally assure a certain scope for the object (such as Singleton or
Prototype). Howard Lewis Ship explained this circumstances nicely in his blog [http://tapestryjava.blogspot.com/2004/08/dependency-injection-mirror-of-garbage.html]
(quite some time ago):

Once you start thinking in terms of large numbers of objects, and a whole lot of just
in time object creation and configuration, the question of how to create a new object
doesn’t change (that’s what new is for) … but the questions when and who
become difficult to tackle. Especially when the when is very dynamic, due to
just-in-time instantiation, and the who is unknown, because there are so many places
a particular object may be used.

The Object Manager is responsible for object building and dependency resolution (we’ll
discover shortly why dependency injection makes such a difference to your application
design). In order to fulfill its task, it is important that all objects are instantiated
only through the object framework.

Important

As a general rule of thumb for those not developing the Flow core itself but your very
own packages:

Use Dependency Injection whenever possible for retrieving singletons.

Object Scopes

Objects live in a specific scope. The most commonly used are prototype and singleton:

	Scope

	Description

	singleton

	The object instance is unique during one request - each
injection by the Object Manager or explicit call of
get() returns the same instance. A request can be an
HTTP request or a run initiated from the command line.

	prototype (default)

	The object instance is not unique - each injection or call of
the Object Factory’s create method returns a fresh instance.

	session

	The object instance is unique during the whole user session -
each injection or get() call returns the same instance.

Background: Objects in PHP

In PHP, objects of the scope prototype are created with the new operator:

$myFreshObject = new \MyCompany\MyPackage\MyClassName();

In contrast to Prototype, the Singleton design pattern ensures that only one instance of a
class exists at a time. In PHP the Singleton pattern is often implemented by providing a
static function (usually called getInstance), which returns a unique instance of the
class:

/**
 * Implementation of the Singleton pattern
 */
class ASingletonClass {

 protected static $instance;

 static public function getInstance() {
 if (!is_object(self::$instance)) {
 self::$instance = $this;
 }
 return self::$instance;
 }
}

Although this way of implementing the singleton will possibly not conflict with the Object
Manager, it is counterproductive to the integrity of the system and might raise problems
with unit testing (sometimes Singleton is referred to as an Anti Pattern).
The above examples are not recommended for the use within Flow applications.

The scope of an object is determined from its configuration (see also Configuring objects).
The recommended way to specify the scope is the @scope annotation:

 namespace MyCompany\MyPackage;

use Neos\Flow\Annotations as Flow;

 /**
 * A sample class
 *
 * @Flow\Scope("singleton")
 */
 class SomeClass {
 }

Prototype is the default scope and is therefore assumed if no @scope annotation or
other configuration was found.

Creating Prototypes

To create prototype objects, just use the new operator as you are used to:

$myFreshObject = new \MyCompany\MyPackage\MyClassName();

When you do this, some magic is going on behind the scenes which still makes sure the object
you get back is managed by the object framework. Thus, all dependencies are properly injected
into the object, lifecycle callbacks are fired, and you can use Aspect-Oriented Programming, etc.

Behind the scenes of the Object Framework

In order to provide the functionality that you can just use new to create new
prototype objects, a lot of advanced things happen behind the scenes.

Flow internally copies all classes to another file, and appends _Original to their
class name. Then, it creates a new class under the original name where all the magic is
happening.

However, you as a user do not have to deal with that. The only thing you need to remember
is using new for creating new Prototype objects. And you might know this from PHP ;-)

Retrieving Singletons

The Object Manager maintains a registry of all instantiated singletons and ensures that
only one instance of each class exists. The preferred way to retrieve a singleton object
is dependency injection.

Example: Retrieving the Object Manager through dependency injection

namespace MyCompany\MyPackage;

/**
 * A sample class
 */
class SampleClass {

 /**
 * @var \Neos\Flow\ObjectManagement\ObjectManagerInterface
 */
 protected $objectManager;

 /**
 * Constructor.
 * The Object Manager will automatically be passed (injected) by the object
 * framework on instantiating this class.
 *
 * @param \Neos\Flow\ObjectManagement\ObjectManagerInterface $objectManager
 */
 public function __construct(\Neos\Flow\ObjectManagement\ObjectManagerInterface $objectManager) {
 $this->objectManager = $objectManager;
 }
}

Once the SampleClass is being instantiated, the object framework will automagically
pass a reference to the Object Manager (which is an object of scope singleton) as an
argument to the constructor. This kind of dependency injection is called
Constructor Injection and will be explained - together with other kinds of injection -
in one of the later sections.

Although dependency injection is what you should strive for, it might happen that you need
to retrieve object instances directly. The ObjectManager provides methods for
retrieving object instances for these rare situations. First, you need an instance of the
ObjectManager itself, again by taking advantage of constructor injection:

public function __construct(\Neos\Flow\ObjectManagement\ObjectManagerInterface $objectManager) {
 $this->objectManager = $objectManager;
}

Note

In the text, we commonly refer to the ObjectManager. However, in your code, you should
always use the ObjectManagerInterface if you need an instance of the Object Manager injected.

To explicitly retrieve an object instance use the get() method:

$myObjectInstance = $objectManager->get('MyCompany\MyPackage\MyClassName');

It is not possible to pass arguments to the constructor of the object, as the object might
be already instantiated when you call get(). If the object needs constructor arguments,
these must be configured in Objects.yaml.

Lifecycle methods

The lifecycle of an object goes through different stages. It boils down to the following
order:

	Solve dependencies for constructor injection

	Create an instance of the object class, injecting the constructor dependencies

	Solve and inject dependencies for setter injection

	Live a happy object-life and solve exciting tasks

	Dispose the object instance

Your object might want to take some action after certain of the above steps. Whenever one
of the following methods exists in the object class, it will be invoked after the related
lifecycle step:

	No action after this step

	During instantiation the function __construct() is called (by PHP itself),
dependencies are passed to the constructor arguments

	After all dependencies have been injected (through constructor- or setter injection)
the object’s initializeObject() method is called. The name of this method is configurable
inside Objects.yaml. initializeObject() is also called if no dependencies were injected.

	During the life of an object no special lifecycle methods are called

	Before destruction of the object, the function shutdownObject() is called. The name of
this method is also configurable.

	On disposal, the function __destruct() is called (by PHP itself)

We strongly recommend that you use the shutdownObject method instead of PHP’s
__destruct method for shutting down your object. If you used __destruct it might
happen that important parts of the framework are already unavailable. Here’s a simple
example with all kinds of lifecycle methods:

Example: Sample class with lifecycle methods

class Foo {

 protected $bar;
 protected $identifier = 'Untitled';

 public function __construct() {
 echo ('Constructing object ...');
 }

 public function injectBar(\MyCompany\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function setIdentifier($identifier) {
 $this->identifier = $identifier;
 }

 public function initializeObject() {
 echo ('Initializing object ...');
 }

 public function shutdownObject() {
 echo ('Shutting down object ...')
 }

 public function __destruct() {
 echo ('Destructing object ...');
 }
}

Output:

Constructing object ...
Initializing object ...
Shutting down object ...
Destructing object ...

Object Registration and API

Object Framework API

The object framework provides a lean API for registering, configuring and retrieving
instances of objects. Some of the methods provided are exclusively used within Flow
package or in test cases and should possibly not be used elsewhere. By offering
Dependency Injection, the object framework helps you to avoid creating rigid
interdependencies between objects and allows for writing code which is hardly or even not
at all aware of the framework it is working in. Calls to the Object Manager should
therefore be the exception.

For a list of available methods please refer to the API documentation of the interface
Neos\Flow\ObjectManagement\ObjectManagerInterface.

Object Names vs. Class Names

We first need to introduce some namings: A class name is the name of a PHP class, while an
object name is an identifier which is used inside the object framework to identify a certain
object.

By default, the object name is identical to the PHP class which contains the
object’s code. A class called MyCompany\MyPackage\MyImplementation will be
automatically available as an object with the exact same name. Every part of the system
which asks for an object with a certain name will therefore - by default - get an instance
of the class of that name.

It is possible to replace the original implementation of an
object by another one. In that case the class name of the new implementation will
naturally differ from the object name which stays the same at all times. In these cases it
is important to be aware of the fine difference between an object name and a class name.

All PHP interfaces for which only one implementation class exist are also automatically
registered as object names, with the implementation class being returned when asked
for an instance of the interface.

Thus, you can also ask for interface implementations:

$objectTypeInstance = $objectManager->get('MyCompany\MyPackage\MyInterface');

Note

If zero or more than one class implements the interface, the Object Manager will
throw an exception.

The advantage of programming against interfaces is the increased
flexibility: By referring to interfaces rather than classes it is possible to write code
depending on other classes without the need to be specific about the implementation. Which
implementation will actually be used can be set at a later point in time by simple means
of configuration.

Object Dependencies

The intention to base an application on a combination of packages and objects is to force
a clean separation of domains which are realized by dedicated objects. The less each
object knows about the internals of another object, the easier it is to modify or replace
one of them, which in turn makes the whole system flexible. In a perfect world, each of
the objects could be reused in a variety of contexts, for example independently from
certain packages and maybe even outside the Flow framework.

Dependency Injection

An important prerequisite for reusable code is already met by encouraging encapsulation
through object orientation. However, the objects are still aware of their environment as
they need to actively collaborate with other objects and the framework itself: An
authentication object will need a logger for logging intrusion attempts and the code of a
shop system hopefully consists of more than just one class. Whenever an object refers to
another directly, it adds more complexity and removes flexibility by opening new
interdependencies. It is very difficult or even impossible to reuse such hardwired classes
and testing them becomes a nightmare.

By introducing Dependency Injection, these interdependencies are minimized by inverting
the control over resolving the dependencies: Instead of asking for the instance of an
object actively, the depending object just gets one injected by the Object Manager.
This methodology is also referred to as the “Hollywood Principle [http://en.wikipedia.org/wiki/Hollywood_Principle]”: Don’t call us,
we’ll call you. It helps in the development of code with loose coupling and high
cohesion — or in short: It makes you a better programmer.

In the context of the previous example it means that the authentication object announces
that it needs a logger which implements a certain PHP interface (for example the
Psr\Log\LoggerInterface).
The object itself has no control over what kind of logger (file-logger,
sms-logger, …) it finally gets and it doesn’t have to care about it anyway as long as it
matches the expected API. As soon as the authentication object is instantiated, the object
manager will resolve these dependencies, prepare an instance of a logger and
inject it to the authentication object.

Reading Tip

An article [http://www.ddj.com/dept/java/184405016] by Jonathan Amsterdam discusses the difference between creating an object
and requesting one (i.e. using new versus using dependency injection). It
demonstrates why new should be considered as a low-level tool and outlines issues
with polymorphism. He doesn’t mention dependency injection though …

Dependencies on other objects can be declared in the object’s configuration (see Configuring objects) or they can be solved automatically (so called autowiring).
Generally there are two modes of dependency injection supported by Flow:
Constructor Injection and Setter Injection.

Note

Please note that Flow removes all injected properties before serializing an object.
Then after unserializing injections happen again. That means that injected properties are
fresh instances and do not keep any state from before the serialization. That hold true
also for Prototypes. If you want to keep a Prototype instance with its state throughout
a serialize/unserialize cycle you should not inject the Prototype but rather create it in
constructor of the object.

Constructor Injection

With constructor injection, the dependencies are passed as constructor arguments to the
depending object while it is instantiated. Here is an example of an object Foo which
depends on an object Bar:

Example: A simple example for Constructor Injection

namespace MyCompany\MyPackage;

class Foo {

 protected $bar;

 public function __construct(\MyCompany\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

So far there’s nothing special about this class, the type hint just makes sure that an instance of
a class implementing the \MyCompany\MyPackage\BarInterface is passed to the constructor.
However, this is already a quite flexible approach because the type of $bar can be
determined from outside by just passing one or the another implementation to the
constructor.

Now the Flow Object Manager does some magic: By a mechanism called Autowiring all
dependencies which were declared in a constructor will be injected automagically if the
constructor argument provides a type definition (i.e.
\MyCompany\MyPackage\BarInterface in the above example). Autowiring is activated by
default (but can be switched off), therefore all you have to do is to write your
constructor method.

The object framework can also be configured manually to inject a certain object or object
type. You’ll have to do that either if you want to switch off autowiring or want to
specify a configuration which differs from would be done automatically.

Example: Objects.yaml file for Constructor Injection

MyCompany\MyPackage\Foo:
 arguments:
 1:
 object: 'MyCompany\MyPackage\Bar'

The three lines above define that an object instance of \MyCompany\MyPackage\Bar must
be passed to the first argument of the constructor when an instance of the object
MyCompany\MyPackage\Foo is created.

Setter Injection

With setter injection, the dependencies are passed by calling setter methods of the
depending object right after it has been instantiated. Here is an example of the Foo
class which depends on a Bar object - this time with setter injection:

Example: A simple example for Setter Injection

namespace MyCompany\MyPackage;

class Foo {

 protected $bar;

 public function setBar(\MyCompany\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Analog to the constructor injection example, a BarInterface compatible object is
injected into the Foo object. In this case, however, the injection only takes
place after the class has been instantiated and a possible constructor method has been
called. The necessary configuration for the above example looks like this:

Example: Objects.yaml file for Setter Injection

MyCompany\MyPackage\Foo:
 properties:
 bar:
 object: 'MyCompany\MyPackage\BarInterface'

Unlike constructor injection, setter injection like in the above example does not offer
the autowiring feature. All dependencies have to be declared explicitly in the object
configuration.

To save you from writing large configuration files, Flow supports a second
type of setter methods: By convention all methods whose name start with inject are
considered as setters for setter injection. For those methods no further configuration is
necessary, dependencies will be autowired (if autowiring is not disabled):

Example: The preferred way of Setter Injection, using an inject method

namespace MyCompany\MyPackage;

class Foo {

 protected $bar;

 public function injectBar(\MyCompany\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Note the new method name injectBar - for the above example no further configuration is
required. Using inject* methods is the preferred way for setter
injection in Flow.

Note

If both, a set* and an inject* method exist for the same property, the
inject* method has precedence.

Constructor- or Setter Injection?

The natural question which arises at this point is Should I use constructor- or setter
injection? There is no answer across-the-board — it mainly depends on the situation
and your preferences. The authors of the Java-based Spring Framework [http://www.springframework.org] for example
prefer Setter Injection for its flexibility. The more puristic developers of
PicoContainer [http://www.picocontainer.org] strongly plead for using Constructor Injection for its cleaner
approach. Reasons speaking in favor of constructor injections are:

	Constructor Injection makes a stronger dependency contract

	It enforces a determinate state of the depending object:
using setter Injection, the injected object is only available after the constructor
has been called

However, there might be situations in which constructor injection is not possible or
even cumbersome:

	If an object has many dependencies and maybe even many optional dependencies, setter
injection is a better solution.

	Subclasses are not always in control over the arguments passed to the constructor or
might even be incapable of overriding the original constructor.
Then setter injection is your only chance to get dependencies injected.

	Setter injection can be helpful to avoid circular dependencies between objects.

	Setters provide more flexibility to unit tests than a fixed set of constructor
arguments

Property Injection

Setter injection is the academic, clean way to set dependencies from outside. However,
writing these setters can become quite tiresome if all they do is setting the property.
For these cases Flow provides support for Property Injection:

Example: Example for Property Injection

 namespace MyCompany\MyPackage;

use Neos\Flow\Annotations as Flow;

 class Foo {

 /**
 * An instance of a BarInterface compatible object.
 *
 * @var \MyCompany\MyPackage\BarInterface
 * @Flow\Inject
 */
 protected $bar;

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
 }

You could say that property injection is the same like setter injection — just without the
setter. The Inject annotation tells the object framework that the property is
supposed to be injected and the @var annotation specifies the type. Note that property
injection even works (and should only be used) with protected properties. The Objects.yaml
configuration for property injection is identical to the setter injection configuration.

Note

If a setter method exists for the same property, it has precedence.

Setting properties directly, without a setter method, surely is convenient - but is it
clean enough? In general it is a bad idea to allow direct access to mutable properties
because you never know if at some point you need to take some action while a property is
set. And if thousands of users (or only five) use your API, it’s hard to change your
design decision in favor of a setter method.

However, we don’t consider injection methods as part of the public API. As you’ve seen,
Flow takes care of all the object dependencies and the only other code working with
injection methods directly are unit tests. Therefore we consider it safe to say that you
can still switch back from property injection to setter injection without problems if it
turns out that you really need it.

Lazy Dependency Injection

Using Property Injection is, in its current implementation, the most performant way
to inject a dependency. As an important additional benefit you also get Lazy
Dependency Injection: instead of loading the class of the dependency, instantiating
and intializing it, a proxy is injected instead. This object waits until it
will be accessed the first time. Once you start using the dependency, the proxy
will build or retrieve the real dependency, call the requested method and return
the result. On all following method calls, the real object will be used.

By default all dependencies injected through Property Injection are lazy. Usually
this process is fully transparent to the user, unless you start passing around
dependencies to other objects:

Example: Passing a dependency around

 namespace MyCompany\MyPackage;

use Neos\Flow\Annotations as Flow;

 class Foo {

 /**
 * A dependency, injected lazily:
 *
 * @var \MyCompany\MyPackage\BarInterface
 * @Flow\Inject
 */
 protected $bar;

 ...

 public function doSomething() {
 $this->baz->doSomethingElse($this->bar);
 }

 }

 class Baz {

 public function doSomethingElse(Bar $bar) {
 ...
 }

 }

The above example will break: at the time you pass $this->bar to the
doSomethingElse() method, it is not yet a Bar object but a
DependencyProxy object. Because doSomethingElse() has a type hint requiring
a Bar object, PHP will issue a fatal error.

There are two ways to solve this:

	activating the dependency manually

	turning off lazy dependency injection for this property

Example: Manually activating a dependency

 namespace MyCompany\MyPackage;

use Neos\Flow\Annotations as Flow;

 class Foo {

 /**
 * A dependency, injected lazily:
 *
 * @var \MyCompany\MyPackage\BarInterface
 * @Flow\Inject
 */
 protected $bar;

 ...

 public function doSomething() {
 if ($this->bar instanceof \Neos\Flow\ObjectManagement\DependencyInjection\DependencyProxy) {
 $this->bar->_activateDependency();
 }
 $this->baz->doSomethingElse($this->bar);
 }

 }

In the example above, $this->bar is activated before it is passed to the next
method. It’s important to check if the object still is a proxy because otherwise
calling _activateDependency() will fail.

Example: Turning off lazy dependency injection

 namespace MyCompany\MyPackage;

use Neos\Flow\Annotations as Flow;

 class Foo {

 /**
 * A dependency, injected eagerly
 *
 * @var \MyCompany\MyPackage\BarInterface
 * @Flow\Inject(lazy = FALSE)
 */
 protected $bar;

 ...

 public function doSomething() {
 $this->baz->doSomethingElse($this->bar);
 }

 }

In the second solution, lazy dependency injection is turned off. This way you can
be sure that $this->bar always contains the object you expected, but you don’t
benefit from the speed optimizations.

Settings Injection

No, this headline is not misspelled. Flow offers some convenient feature which allows for
automagically injecting the settings of the current package without the need to configure
the injection. If a class contains a method called injectSettings and autowiring is
not disabled for that object, the Object Builder will retrieve the settings of the package
the object belongs to and pass it to the injectSettings method.

Example: the magic injectSettings method

namespace MyCompany\MyPackage;

class Foo {

 protected $settings = array();

 public function injectSettings(array $settings) {
 $this->settings = $settings;
 }

 public function doSomething() {
 var_dump($this->settings);
 }
}

The doSomething method will output the settings of the MyPackage package.

In case you only need a specific setting, there’s an even more convenient way to inject a single
setting value into a class property:

 namespace Acme\Demo;

use Neos\Flow\Annotations as Flow;

 class SomeClass {

 /**
 * @var string
 * @Flow\InjectConfiguration("administrator.name")
 */
 protected $name;

 /**
 * @var string
 * @Flow\InjectConfiguration(path="email", package="SomeOther.Package")
 */
 protected $emailAddress;

 }

The InjectConfiguration annotation also supports for injecting all settings of a package. And it can also be used
to inject any other registered configuration type:

namespace Acme\Demo;

class SomeClass {

 /**
 * @var array
 * @Flow\InjectConfiguration(package="SomeOther.Package")
 */
 protected $allSettingsOfSomeOtherPackage;

 /**
 * @var array
 * @Flow\InjectConfiguration(type="Views")
 */
 protected $viewsConfiguration;

}

Required Dependencies

All dependencies defined in a constructor are, by its nature, required. If a dependency
can’t be solved by autowiring or by configuration, Flow’s object builder will throw an
exception.

Also autowired setter-injected dependencies are, by default, required. If the object
builder can’t autowire an object for an injection method, it will throw an exception.

Dependency Resolution

The dependencies between objects are only resolved during the instantiation process.
Whenever a new instance of an object class needs to be created, the object configuration
is checked for possible dependencies. If there is any, the required objects are built and
only if all dependencies could be resolved, the object class is finally instantiated and
the dependency injection takes place.

During the resolution of dependencies it might happen that circular dependencies occur. If
an object A requires an object B to be injected to its constructor and then again object B
requires an object A likewise passed as a constructor argument, none of the two classes can
be instantiated due to the mutual dependency. Although it is technically possible (albeit
quite complex) to solve this type of reference, Flow’s policy is not to allow circular
constructor dependencies at all. As a workaround you can use setter injection instead
for either one or both of the objects causing the trouble.

Configuring objects

The behavior of objects significantly depends on their configuration. During the
initialization process all classes found in the various Classes/ directories are
registered as objects and an initial configuration is prepared. In a second step, other
configuration sources are queried for additional configuration options. Definitions found
at these sources are added to the base configuration in the following order:

	If they exist, the <PackageName>/Configuration/Objects.yaml will be included.

	Additional configuration defined in the global Configuration/Objects.yaml directory is applied.

	Additional configuration defined in the global Configuration/<ApplicationScope>/Objects.yaml directory is applied.

Currently there are three important situations in which you want to configure objects:

	Override one object implementation with another

	Set the active implementation for an object type

	Explicitly define and configure dependencies to other objects

Configuring Objects Through Objects.yaml

If a file named Objects.yaml exists in the Configuration directory
of a package, it will be included during the configuration process. The YAML file should
stick to Flow’s general rules for YAML-based configuration.

Example: Sample Objects.yaml file

#
Object Configuration for the MyPackage package
#

@package MyPackage

MyCompany\MyPackage\Foo:
 arguments:
 1:
 object: 'MyCompany\MyPackage\Baz'
 2:
 value: "some string"
 3:
 value: false
 properties:
 bar:
 object: 'MyCompany\MyPackage\BarInterface'
 enableCache:
 setting: MyPackage.Cache.enable

Configuring Objects Through Annotations

A very convenient way to configure certain aspects of objects are annotations. You write
down the configuration directly where it takes effect: in the class file. However, this
way of configuring objects is not really flexible, as it is hard coded. That’s why only
those options can be set through annotations which are part of the class design and won’t
change afterwards. Currently scope, inject and autowiring are the only
supported annotations.

It’s up to you defining the scope in the class directly or doing it in a Objects.yaml
configuration file – both have the same effect. We recommend using annotations in this
case, as the scope usually is a design decision which is very unlikely to be changed.

Example: Sample scope annotation

/**
 * This is my great class.
 *
 * @Flow\Scope("singleton")
 */
class SomeClass {

}

Example: Sample autowiring annotation for a class

/**
 * This turns off autowiring for the whole class:
 *
 * @Flow\Autowiring(false)
 */
class SomeClass {

}

Example: Sample autowiring annotation for a method

/**
 * This turns off autowiring for a single method:
 *
 * @param \Neos\Foo\Bar $bar
 * @Flow\Autowiring(false)
 */
public function injectMySpecialDependency(\Neos\Foo\Bar $bar) {

}

Overriding Object Implementations

One advantage of componentry is the ability to replace objects by others
without any bad impact on those parts depending on them.

A prerequisite for replaceable objects is that their classes implement a common
interface [http://www.php.net/manual/en/language.oop5.interfaces.php] which defines the public API of the original object. Other objects
which implement the same interface can then act as a true replacement for the
original object without the need to change code anywhere in the system. If this
requirement is met, the only necessary step to replace the original
implementation with a substitute is to alter the object configuration and set
the class name to the new implementation.

To illustrate this circumstance, consider the following classes.

Example: The Greeter object type

namespace MyCompany\MyPackage;

interface GreeterInterface {
 public function sayHelloTo($name);
}

class Greeter implements GreeterInterface {
 public function sayHelloTo($name) {
 echo 'Hello ' . $name;
 }
}

During initialization the above Greeter class will automatically be
registered as the default implementation of
MyCompany\MyPackage\GreeterInterface and is available to other objects. In
the class code of another object you might find the following lines.

Example: Using the Greeter object type

// Use setter injection for fetching an instance
// of \MyCompany\MyPackage\GreeterInterface:
public function injectGreeter(\MyCompany\MyPackage\GreeterInterface $greeter) {
 $this->greeter = $greeter;
}

public function someAction() {
 $this->greeter->sayHelloTo('Heike');
}

If we want to use the much better object
\Neos\OtherPackage\GreeterWithCompliments, the solution is to let the new
implementation implement the same interface.

Example: The improved Greeter object type

namespace Neos\OtherPackage;

class GreeterWithCompliments implements \MyCompany\MyPackage\GreeterInterface {
 public function sayHelloTo($name) {
 echo('Hello ' . $name . '! You look so great!');
 }
}

Then we have to set which implementation of the MyCompany\MyPackage\GreeterInterface
should be active and are done:

Example: Objects.yaml file for object type definition

MyCompany\MyPackage\GreeterInterface:
 className: 'Neos\OtherPackage\GreeterWithCompliments'

The the same code as above will get the improved GreeterWithCompliments
instead of the simple Greeter now.

Configuring Injection

The object framework allows for injection of straight values, objects (i.e. dependencies)
or settings either by passing them as constructor arguments during instantiation of the
object class or by calling a setter method which sets the wished property accordingly. The
necessary configuration for injecting objects is usually generated automatically by the
autowiring capabilities of the Object Builder. Injection of straight values or settings,
however, requires some explicit configuration.

Injection Values

Regardless of what injection type is used (constructor or setter injection), there are
three kinds of value which can be injected:

	value: static value of a simple type. Can be string, integer, boolean or array and is
passed on as is.

	object: object name which represents a dependency.
Dependencies of the injected object are resolved and an instance of the object is
passed along.

	setting: setting defined in one of the Settings.yaml files. A path separated by dots
specifies which setting to inject.

Constructor Injection

Arguments for constructor injection are defined through the arguments option. Each
argument is identified by its position, counting starts with 1.

Example: Sample class for Constructor Injection

namespace MyCompany\MyPackage;

class Foo {

 protected $bar;
 protected $identifier;
 protected $enableCache;

 public function __construct(\MyCompany\MyPackage\BarInterface $bar, $identifier,
 $enableCache) {
 $this->bar = $bar;
 $this->identifier = $identifier;
 $this->enableCache = $enableCache;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example: Sample configuration for Constructor Injection

MyCompany\MyPackage\Foo:
 arguments:
 1:
 object: 'MyCompany\MyPackage\Bar'
 2:
 value: "some string"
 3:
 setting: "MyPackage.Cache.enable"

Note

It is usually not necessary to configure injection of objects explicitly. It is much
more convenient to just declare the type of the constructor arguments (like
MyCompany\MyPackage\BarInterface in the above example) and let the autowiring
feature configure and resolve the dependencies for you.

Setter Injection

The following class and the related Objects.yaml file demonstrate the syntax for the
definition of setter injection:

Example: Sample class for Setter Injection

namespace MyCompany\MyPackage;

class Foo {

 protected $bar;
 protected $identifier = 'Untitled';
 protected $enableCache = FALSE;

 public function injectBar(\MyCompany\MyPackage\BarInterface $bar) {
 $this->bar = $bar;
 }

 public function setIdentifier($identifier) {
 $this->identifier = $identifier;
 }

 public function setEnableCache($enableCache) {
 $this->enableCache = $enableCache;
 }

 public function doSomething() {
 $this->bar->doSomethingElse();
 }
}

Example: Sample configuration for Setter Injection

MyCompany\MyPackage\Foo:
 properties:
 bar:
 object: 'MyCompany\MyPackage\Bar'
 identifier:
 value: 'some string'
 enableCache:
 setting: 'MyPackage.Cache.enable'

As you can see, it is important that a setter method with the same name as the property,
preceded by inject or set exists. It doesn’t matter though, if you choose inject or
set, except that inject has the advantage of being autowireable. As a rule of thumb we
recommend using inject for required dependencies and values and set for optional
properties.

Injection of Objects Specified in Settings

In some cases it might be convenient to specify the name of the object to be injected in
the settings rather than in the objects configuration. This can be achieved by
specifying the settings path instead of the object name:

Example: Injecting an object specified in the settings

MyCompany\MyPackage\Foo:
 properties:
 bar:
 object: 'MyCompany.MyPackage.fooStuff.barImplementation'

Example: Settings.yaml of MyPackage

MyCompany:
 MyPackage:
 fooStuff:
 barImplementation: 'MyCompany\MyPackage\Bars\ASpecialBar'

Nested Object Configuration

While autowiring and automatic dependency injection offers a great deal of convenience, it
is sometimes necessary to have a fine grained control over which objects are injected with
which third objects injected.

Consider a Flow cache object, a VariableCache for example: the cache itself depends
on a cache backend which on its part requires a few settings passed to its constructor -
this readily prepared cache should now be injected into another object. Sounds complex?
With the objects configuration it is however possible to configure even that nested object
structure:

Example: Nesting object configuration

MyCompany\MyPackage\Controller\StandardController:
 properties:
 cache:
 object:
 name: 'Neos\Cache\VariableCache'
 arguments:
 1:
 value: MyCache
 2:
 object:
 name: 'Neos\Cache\Backend\File'
 properties:
 cacheDirectory:
 value: /tmp/

Disabling Autowiring

Injecting dependencies is a common task. Because Flow can detect the type of dependencies
a constructor needs, it automatically configures the object to ensure that the necessary
objects are injected. This automation is called autowiring and is enabled by default for
every object. As long as autowiring is in effect, the Object Builder will try to autowire
all constructor arguments and all methods named after the pattern inject*.

If, for some reason, autowiring is not wanted, it can be disabled by setting an option in
the object configuration:

Example: Turning off autowiring support in Objects.yaml

MyCompany\MyPackage\MyObject:
 autowiring: off

Autowiring can also be switched off through the @autowiring off annotation - either
in the documentation block of a whole class or of a single method. For the latter the
annotation only has an effect when used in comment blocks of a constructor or of a method
whose name starts with inject.

Custom Factories

Complex objects might require a custom factory which takes care of all important settings
and dependencies. As we have seen previously, a logger consists of a frontend, a backend
and configuration options for that backend. Instead of creating and configuring these
objects on your own, you should use the Neos\Flow\Log\PsrLoggerFactory which provides a
convenient get method taking care of all the rest:

$myCache = $loggerFactory->get('systemLogger');

It is possible to specify for each object if it should be created by a custom factory
rather than the Object Builder. Consider the following configuration:

Example: Sample configuration for a Custom Factory

Neos\Flow\Log\PsrSystemLoggerInterface:
 scope: singleton
 factoryObjectName: Neos\Flow\Log\PsrLoggerFactory
 factoryMethodName: get

From now on the LoggerFactory’s get method will be called each time an object of
type SystemLoggerInterface needs to be instantiated. If arguments were passed to the
ObjectManagerInterface::get() method or defined in the configuration, they will be
passed through to the custom factory method:

Example: YAML configuration for a Custom Factory with default arguments

Neos\Flow\Log\PsrSystemLoggerInterface:
 scope: singleton
 factoryObjectName: Neos\Flow\Log\PsrLoggerFactory
 factoryMethodName: get
 arguments:
 1:
 value: 'systemLogger'

Example: PHP code using the custom factory

$myCache = $objectManager->get(\Neos\Flow\Log\PsrSystemLoggerInterface::class);

$objectManager is a reference to the Neos\Flow\ObjectManagement\ObjectManager.
The required arguments are automatically built from the values defined in the
object configuration.

Name of Lifecycle Methods

The default name of a lifecycle methods is initializeObject and shutdownObject.
If these methods exist, the initialization method will be called after the object has been
instantiated or recreated and all dependencies are injected and the shutdown method is
called before the Object Manager quits its service.

As the initialization method is being called after creating an object and after
recreating/reconstituting an object, there are cases where different code should be
executed. That is why the initialization method gets a parameter, which is one of the
\Neos\Flow\ObjectManagement\ObjectManagerInterface::INITIALIZATIONCAUSE_* constants:

	\Neos\Flow\ObjectManagement\ObjectManagerInterface::INITIALIZATIONCAUSE_CREATED

	If the object is newly created (i.e. the constructor has been called)

	\Neos\Flow\ObjectManagement\ObjectManagerInterface::INITIALIZATIONCAUSE_RECREATED

	If the object has been recreated/reconstituted (i.e. the constructor has not been
called)

The name of both methods is configurable per object for situations you don’t have control
over the name of your initialization method (maybe, because you are integrating legacy
code):

Example: Objects.yaml configuration of the initialization and shutdown method

MyCompany\MyPackage\MyObject:
 lifecycleInitializationMethod: myInitializeMethodName
 lifecycleShutdownMethod: myShutdownMethodName

Static Method Result Compilation

Some part of a Flow application may rely on data which is static during runtime,
but which cannot or should not be hardcoded.

One example is the validation rules generated by the MVC framework for arguments of
a controller action: the base information (PHP methods for the actions, type hints
and arguments of these methods) is static. However, the validation rules should be
determined automatically by the framework instead of being configured or hardcoded
elsewhere. On the other hand, generating validation rules during runtime unnecessarily
slows down the application. The solution is static method result compilation.

A method which generates data based on information already known at compile time
can usually be made static. Consider the following example:

/**
 * Returns a map of action method names and their parameters.
 *
 * @return array Array of method parameters by action name
 */
public function getActionMethodParameters() {
 $methodParameters = $this->reflectionService->getMethodParameters(get_class($this), $this->actionMethodName);
 foreach ($methodParameters as $parameterName => $parameterInfo) {
 ...
 }
 return $methodParameters;
}

In the example above, getActionMethodParameters() returns data needed during
runtime which could easily be pre-compiled.

By annotating the method with @Flow\CompileStatic and transforming it into a
static method which does not depend on runtime services like persistence, security
and so on, the performance in production context can be improved:

/**
 * Returns a map of action method names and their parameters.
 *
 * @param \Neos\Flow\ObjectManagement\ObjectManagerInterface $objectManager
 * @return array Array of method parameters by action name
 * @Flow\CompileStatic
 */
static protected function getActionMethodParameters($objectManager) {
 $reflectionService = $objectManager->get(\Neos\Flow\Reflection\ReflectionService::class);
 $className = get_called_class();
 $methodParameters = $reflectionService->getMethodParameters($className, get_class_methods($className));
 foreach ($methodParameters as $parameterName => $parameterInfo) {
 ...
 }
 return $methodParameters;
}

The results of methods annotated with CompileStatic will only be compile in
Production context. When Flow is started in a different context, the method
will be executed during each run.

Enabling Other Package Classes For Object Management

As stated in the beginning of this part, all classes in packages not in one of the neos-*
types is not recognized for object management by default. If you still want that you can include
those classes via configuration in settings. The configuration consists of a map of package keys to
arrays of expressions which match classes to be included. In the following example we include all
classes of the Acme.Objects package:

Neos:
 Flow:
 object:
 includeClasses:
 'Acme.Objects' : ['.*']

Note

If you use the includeClasses setting on a flow package (which is already enabled for object
management) then only the classes that match at least one of the filter expressions are going to
be object managed. This can also be used to remove classes inside flow packages from object
management by specifying a non-matching expression or an empty array.

Note

The static method must except exactly one argument which is the Flow
Object Manager. You cannot use a type hint at this point (for the $objectManager
argument) because the argument passed could actually be a DependencyProxy and
not the real ObjectManager. Please refer to the section about Lazy Dependency
Injection for more information about DependencyProxy.

Persistence

This chapter explains how to use object persistence in Flow. To do this, it focuses on
the persistence based on the Doctrine 2 ORM first. There is another mechanism available,
called Generic persistence, which can be used to add your own persistence backends to
Flow. It is explained separately later in the chapter.

Tip

If you have experience with Doctrine 2 already, your knowledge can
be applied fully in Flow. If you have not worked with Doctrine 2 in the
past, it might be helpful to learn more about it, as that might clear up
questions this documentation might leave open.

Introductory Example

Let’s look at the following example as an introduction to how Flow handles persistence.
We have a domain model of a Blog, consisting of Blog, Post, Comment and Tag objects:

[image: The objects of the Blog domain model]
The objects of the Blog domain model

Connections between those objects are built (mostly) by simple references in PHP, as a
look at the addPost() method of the Blog class shows:

Example: The Blog’s addPost() method

/**
 * @param \Neos\Blog\Domain\Model\Post $post
 * @return void
 */
public function addPost(\Neos\Blog\Domain\Model\Post $post) {
 $post->setBlog($this);
 $this->posts->add($post);
}

The same principles are applied to the rest of the classes, resulting in an object tree of
a blog object holding several posts, those in turn having references to their associated
comments and tags.

But now we need to make sure the Blog and the data in it are still available the next
time we need them. In the good old days of programming you might have
added some ugly database calls all over the system at this point. In the currently
widespread practice of loving Active Record you’d still add save() methods to all or most
of your objects. But can it be even easier?

To access an object you need to hold some reference to it. You can get that reference by
creating an object or by following some reference to it from some object you already have.
This leaves you at a point where you need to find that “first object”. This is done by
using a Repository. A Repository is the librarian of your system, knowing about all the
objects it manages. In our model the Blog is the entry point to our object tree,
so we will add a BlogRepository, allowing us to find Blog instances by the criteria we need.

Now, before we can find a Blog, we need to create and save one. What we do is create the
object and add it to the BlogRepository. This will automagically persist your Blog
and you can retrieve it again later.

For all that magic to work as expected, you need to give some hints. This doesn’t mean you
need to write tons of XML, a few annotations in your code are enough:

Example: Persistence-related annotations in the Blog class

namespace Neos\Blog\Domain\Model;

/**
 * A Blog object
 *
 * @Flow\Entity
 */
class Blog {

 /**
 * @var string
 * @Flow\Validate(type="Text")
 * @Flow\Validate(type="StringLength", options={ "minimum"=1, "maximum"=80 })
 * @ORM\Column(length=80)
 */
 protected $title;

 /**
 * @var \Doctrine\Common\Collections\ArrayCollection<\Neos\Blog\Domain\Model\Post>
 * @ORM\OneToMany(mappedBy="blog")
 * @ORM\OrderBy({"date" = "DESC"})
 */
 protected $posts;

 ...

}

The first annotation to note is the Entity annotation, which tells the persistence
framework it needs to persist Blog instances if they have been added to a Repository. In
the Blog class we have some member variables, they are persisted as well by default. The
persistence framework knows their types by looking at the @var annotation you use anyway
when documenting your code (you do document your code, right?).

The Column annotation on $title is an optimization since we allow only 80 chars
anyway. In case of the $posts property the persistence framework persists the objects held
in that ArrayCollection as independent objects in a one-to-many relationship. Apart from those
annotations your domain object’s code is completely unaware of the persistence infrastructure.

Let’s conclude by taking a look at the BlogRepository code:

Example: Code of a simple BlogRepository

use Neos\Flow\Annotations as Flow;

 /**
 * A BlogRepository
 *
 * @Flow\Scope("singleton")
 */
 class BlogRepository extends \Neos\Flow\Persistence\Repository {
 }

As you can see we get away with very little code by simply extending the Flow-provided
repository class, and still we already have methods like findAll() and even magic
calls like findOneBy<PropertyName>() available. If we need some specialized find
methods in our repository, we can make use of the query building API:

Example: Using the query building API in a Repository

/**
 * A PostRepository
 */
class PostRepository extends \Neos\Flow\Persistence\Repository {

 /**
 * Finds posts by the specified tag and blog
 *
 * @param \Neos\Blog\Domain\Model\Tag $tag
 * @param \Neos\Blog\Domain\Model\Blog $blog The blog the post must refer to
 * @return \Neos\Flow\Persistence\QueryResultInterface The posts
 */
 public function findByTagAndBlog(\Neos\Blog\Domain\Model\Tag $tag,
 \Neos\Blog\Domain\Model\Blog $blog) {
 $query = $this->createQuery();
 return $query->matching(
 $query->logicalAnd(
 $query->equals('blog', $blog),
 $query->contains('tags', $tag)
)
)
 ->setOrderings(array(
 'date' => \Neos\Flow\Persistence\QueryInterface::ORDER_DESCENDING)
)
 ->execute();
 }
}

If you like to do things the hard way you can get away with implementing
\Neos\Flow\Persistence\RepositoryInterface yourself, though that is
something the normal developer never has to do.

Note

With the query building API it is possible to query for properties of sub-entities easily via
a dot-notation path. When querying multiple properties of a collection property, it is ambiguous
if you want to select a single sub-entity with the given matching constraints, or multiple
sub-entities which each matching a part of the given constraints.

Since 4.0 Flow will translate such a query to “find all entities where a single sub-entity matches all the constraints”,
which is the more common case. If you intend a different querying logic, you should fall back to DQL or
native SQL queries instead.

Basics of Persistence in Flow

On the Principles of DDD

From Evans, the rules we need to enforce include:

	The root Entity has global identity and is ultimately responsible for checking
invariants.

	Root Entities have global identity. Entities inside the boundary have local identity,
unique only within the Aggregate.

	Value Objects do not have identity. They are only identified by the combination of their
properties and are therefore immutable.

	Nothing outside the Aggregate boundary can hold a reference to anything inside, except
to the root Entity. The root Entity can hand references to the internal Entities to
other objects, but they can only use them transiently (within a single method or
block).

	Only Aggregate Roots can be obtained directly with database queries. Everything else
must be done through traversal.

	Objects within the Aggregate can hold references to other Aggregate roots.

	A delete operation must remove everything within the Aggregate boundary all at once.

	When a change to any object within the Aggregate boundary is committed, all invariants
of the whole Aggregate must be satisfied.

On the relationship between adding and retrieving

When you add() something to a repository and do a findAll() immediately
afterwards, you might be surprised: the freshly added object will not be found. This is
not a bug, but a decision we took on purpose. Here is why.

When you add an object to a repository, it is added to the internal identity map and will
be persisted later (when persistAll() is called). It is therefore still in a transient
state - but all query operations go directly to the underlying data storage, because we
need to check that anyway. So instead of trying to query the in-memory objects we decided
to ignore transient objects for queries 4.

If you need to query for objects you just created, feel free to have the
PersistenceManager injected and use persistAll() in your code.

How changes are persisted

When you add or remove an object to or from a repository, the object will be added to
or removed from the underlying persistence as expected upon persistAll. But what about
changes to already persisted objects? As we have seen, those changes are only persisted, if
the changed object is given to update on the corresponding repository.

Now, for objects that have no corresponding repository, how are changes persisted? In the
same way you fetch those objects from their parent - by traversal. Flow follows references
from objects managed in a repository (aggregate roots) for all persistence operations,
unless the referenced object itself is an aggregate root.

When using the Doctrine 2 persistence, this is done by virtually creating cascade attributes
on the mapped associations. That means if you changed an object attached to some aggregate
root, you need to hand that aggregate root to update for the change to be persisted.

Safe request methods are read-only

According to the HTTP 1.1 specification, so called “safe request methods” (usually
GET or HEAD requests) should not change your data on the server side and should be
considered read-only. If you need to add, modify or remove data, you should use the
respective request methods (POST, PUT, DELETE and PATCH).

Flow supports this principle because it helps making your application more secure
and perform better. In practice that means for any Flow application: if the current
request is a “safe request method”, the persistence framework will NOT trigger
persistAll() at the end of the script run.

You are free to call PersistenceManager->persistAll() manually or use whitelisted objects
if you need to store some data during a safe request (for example, logging some data
for your analytics).

Whitelisted objects

There are rare cases which still justify persisting objects during safe requests. For example,
your application might want to generate thumbnails of images during a GET request and persist
the resulting PersistentResource instances.

For these cases it is possible to whitelist specific objects via the Persistence Manager:

$this->persistenceManager->whitelistObject($thumbnail);
$this->persistenceManager->whitelistObject($thumbnail->getResource());

Be very careful and think twice before using this method since many security measures are
not active during “safe” request methods.

Dealing with big result sets

If the amount of the stored data increases, receiving all objects using a findAll() may
consume a lot more memory than available. In this cases, you can use the findAllIterator().
This method returns an IterableResult over which you can iterate, getting only one object at a time:

$iterator = $this->postRepository->findAllIterator();
foreach ($this->postRepository->iterate($iterator) as $post) {
 // Iterate over all posts
}

Conventions for File and Class Names

To allow Flow to detect the object type a repository is responsible for, certain
conventions need to be followed:

	Domain models should reside in a Domain/Model directory

	Repositories should reside in a Domain/Repository directory and be named
<ModelName>Repository

	Aside from Model versus Repository the qualified class class names should be the
same for corresponding classes

	Repositories must implement \Neos\Flow\Persistence\RepositoryInterface (which is
already the case when extending \Neos\Flow\Persistence\Repository or
\Neos\Flow\Persistence\Doctrine\Repository)

Example: Conventions for model and repository naming

\Neos
 \Blog
 \Domain
 \Model
 Blog
 Post
 \Repository
 BlogRepository
 PostRepository

Another way to bind a repository to a model is to define a class constant named
ENTITY_CLASSNAME in your repository and give it the desired model name as value. This
should be done only when following the conventions outlined above is not feasible.

Lazy Loading

Lazy Loading is a feature that can be equally helpful and dangerous when it comes to
optimizing your application. Flow defaults to lazy loading when using Doctrine, i.e. it
loads all the data in an object as soon as you fetch the object from the persistence layer
but does not fetch data of associated objects. This avoids massive amounts of objects
being reconstituted if you have a large object tree. Instead it defers property thawing in
objects until the point when those properties are really needed.

The drawback of this: If you access associated objects, each access will fire a request to
the persistent storage now. So there might be situations when eager loading comes in
handy to avoid excessive database roundtrips. Eager loading is the default when using the
Generic persistence mechanism and can be achieved for the Doctrine 2 ORM by using join
operations in DQL or specifying the fetch mode in the mapping configuration.

Doctrine Persistence

Doctrine 2 ORM is used by default in Flow. Aside from very few internal changes it
consists of the regular Doctrine ORM, DBAL, Migrations and Common libraries and is tied
into Flow by some glue code and (most important) a custom annotation driver for metadata
consumption.

Requirements and restrictions

There are some rules imposed by Doctrine (and/or Flow) you need to follow for your
entities (and value objects). Most of them are good practice anyway, and thus are not
really restrictions.

	Entity classes must not be final or contain final methods.

	Persistent properties of any entity class should always be protected, not public,
otherwise lazy-loading might not work as expected.

	Implementing __clone() or __wakeup() is not a problem with Flow, as the
instances always have an identity. If using your own identity properties, you must
wrap any code you intend to run in those methods in an identity check.

	Entity classes in a class hierarchy that inherit directly or indirectly from one another
must not have a mapped property with the same name.

	Entities cannot use func_get_args() to implement variable parameters. The proxies
generated by Doctrine do not support this for performance reasons and your code might
actually fail to work when violating this restriction.

Persisted instance variables must be accessed only from within the entity instance itself,
not by clients of the entity. The state of the entity should be available to clients only through
the entity’s methods, i.e. getter/setter methods or other business methods.

Collection-valued persistent fields and properties must be defined in terms of the
Doctrine\Common\Collections\Collection interface. The collection implementation type
may be used by the application to initialize fields or properties before the entity is
made persistent. Once the entity becomes managed (or detached), subsequent access must
happen through the interface type.

Metadata mapping

The Doctrine 2 ORM needs to know a lot about your code to be able to persist it. Natively
Doctrine 2 supports the use of annotations, XML, YAML and PHP to supply that information.
In Flow, only annotations are supported, as this aligns with the philosophy behind the
framework.

Annotations for the Doctrine Persistence

The following table lists the most common annotations used by the persistence framework
with their name, scope and meaning:

Persistence-related code annotations

	Annotation

	Scope

	Meaning

	Entity

	Class

	Declares a class as an Entity.

	ValueObject

	Class

	Declares a class as a Value Object, allowing the
persistence framework to reuse an existing object if one
exists.

	Column

	Variable

	Allows to take influence on the column actually
generated for this property in the database.
Particularly useful with string properties to limit the
space used or to enable storage of more than 255
characters.

	ManyToOne,
OneToMany,
ManyToMany,
OneToOne

	Variable

	Defines the type of object associations, refer to the
Doctrine 2 documentation for details. The most obvious
difference to plain Doctrine 2 is that the
targetEntity parameter can be omitted, it is taken
from the @var annotation.

The cascade attribute is set to cascade all
operations on associations within aggregate boundaries.
In that case orphanRemoval is turned on as well.

	@var

	Variable

	Is used to detect the type a variable has. For
collections, the type is given in angle brackets.

	Transient

	Variable

	Makes the persistence framework ignore the variable.
Neither will it’s value be persisted, nor will it be
touched during reconstitution.

	Identity

	Variable

	Marks the variable as being relevant for determining
the identity of an object in the domain. For all class
properties marked with this, a (compound) unique index
will be created in the database.

Doctrine supports many more annotations, for a full reference please consult the Doctrine
2 ORM documentation.

On Value Object handling with Doctrine

Doctrine 2.5 supports value objects in the form of embeddable objects 5. This means that
the value object properties will directly be included in the parent entities table schema.
However, Doctrine doesn’t currently support embeddable collections 6.
Therefore, Flow supports two types of value objects: readonly entities and embedded

By default, Flow will use the readonly version, as that is more flexible and also works in
collections. However, this comes with some architectural drawbacks, because the value object
thereby is actually treated like an entity with an identifier, which contradicts the very
definition of a value object.

The behaviour of non-embedded Value Objects is as follows:

	Value Objects are marked immutable as with the ReadOnly annotation of Doctrine.

	Each Value Object will internally be referenced by an identifier that is automatically
generated from it’s property values after construction.

	If the relation to a Value Object is annotated as OneTo* or ManyTo*, the Value Object
will be persisted in it’s own table. Otherwise, unless you override the type using
Column Value Objects will be stored as serialized object in the database.

	Upon persisting Value Objects already present in the underlying database they will be
deduplicated by being referenced through the identifier.

For cases where a *ToMany relation to a Value Object is not needed, the embedded form is the
more natural way to persist value objects. You can therefore set the annotation property
embedded to true, which will cause the Value Object to be embedded inside all Entities
that reference it.

The behaviour of embedded Value Objects is as follows:

	Every entity having a property of type embedded Value Object will get all the properties
of the Value Object included in it’s schema.

	Unless you specify the Embedded Annotation on the relation property, the schema prefix
will be the property name.

/**
 * @Flow\ValueObject(embedded=true)
 */
class ValueObject {
 ...
}

class SomeEntity {

 /**
 * @var ValueObject
 */
 protected $valueObject;

Custom Doctrine mapping types

Doctrine provides a way to develop custom mapping types as explained in the documentation ([#doctrineMappingTypes]).

Registration of those types in a Flow application is done through settings:

Neos:
 Flow:
 persistence:
 doctrine:
 # DBAL custom mapping types can be registered here
 dbal:
 mappingTypes:
 'mytype':
 dbType: 'db_mytype'
 className: 'Acme\Demo\Doctrine\DataTypes\MyType'

The custom type can then be used:

class SomeModel {

 /**
 * Some custom type property
 *
 * @ORM\Column(type="mytype")
 * @var string
 */
 protected $mytypeProperty;

	1

	http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/cookbook/custom-mapping-types.html

On the Doctrine Event System

Doctrine provides a flexible event system to allow extensions to plug into different parts
of the persistence. Therefore two methods to get notification of doctrine events are
possible - through the EventSubscriber interface and registering EventListeners.
Flow allows for easily registering both with Doctrine through the configuration settings
Neos.Flow.persistence.doctrine.eventSubscribers and Neos.Flow.persistence.doctrine.eventListeners
respectively. EventSubscribers need to implement the Doctrine\Common\EventSubscriber Interface
and provide a list of the events they want to subscribe to. EventListeners need to be configured
for the events they want to listen on, but do not need to implement any specific Interface.
See the documentation (7) for more information on the Doctrine Event System.

Example: Configuration for Doctrine EventSubscribers and EventListeners:

Neos:
 Flow:
 persistence:
 doctrine:
 eventSubscribers:
 - 'Foo\Bar\Events\EventSubscriber'
 eventListeners:
 -
 events: ['onFlush', 'preFlush', 'postFlush']
 listener: 'Foo\Bar\Events\EventListener'

On the Doctrine Filter System

Doctrine provides a filter system that allows developers to add SQL
to the conditional clauses of queries, regardless the place where the SQL
is generated (e.g. from a DQL query, or by loading).

Flow allows for easily registering Filters with Doctrine through the
configuration setting Neos.Flow.persistence.doctrine.filters.

Example: Configuration for Doctrine Filters:

Neos:
 Flow:
 persistence:
 doctrine:
 filters:
 'my-filter-name': 'Acme\Demo\Filters\MyFilter'

See the Doctrine documentation (8) for more information on the Doctrine
Filter System.

Note

If you create a filter and run into fatal errors caused by overriding a final
__construct() method in one of the Doctrine classes, you need to add
@Flow\Proxy(false) to your filter class to prevent Flow from building a proxy,
which causes this error.

Warning

Custom SqlFilter implementations - watch out for data privacy issues!

If using custom SqlFilters, you have to be aware that the SQL filter is cached by doctrine, thus your SqlFilter might
not be called as often as you might expect. This may lead to displaying data which is not normally visible to the user!

Basically you are not allowed to call setParameter inside addFilterConstraint; but setParameter must be called before
the SQL query is actually executed. Currently, there’s no standard Doctrine way to provide this; so you manually can receive
the filter instance from $entityManager->getFilters()->getEnabledFilters() and call setParameter() then.

Alternatively, you can register a global context object in Neos.Flow.aop.globalObjects and use it to provide additional
identifiers for the caching by letting these global objects implement CacheAwareInterface; effectively seggregating the
Doctrine cache some more.

Custom Doctrine DQL functions

Doctrine allows custom functions for use in DQL. In order to
configure these for the use in Flow, use the following Settings:

Neos:
 Flow:
 persistence:
 doctrine:
 dql:
 customStringFunctions:
 'SOMEFUNCTION': 'Acme\Demo\Persistence\Ast\SomeFunction'
 customNumericFunctions:
 'FLOOR': 'Acme\Demo\Persistence\Ast\Floor'
 'CEIL': 'Acme\Demo\Persistence\Ast\Ceil'
 customDatetimeFunctions:
 'UTCDIFF': 'Acme\Demo\Persistence\Ast\UtcDiff'

See the Doctrine documentation (2) for more information on the Custom DQL
functions.

	2

	http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html#adding-your-own-functions-to-the-dql-language

Using Doctrine’s Second Level Cache

Since 2.5, Doctrine provides a second level cache that further improves performance of relation queries
beyond the result query cache.

See the Doctrine documentation (3) for more information on the second level cache.
Flow allows you to enable and configure the second level cache through the configuration setting
Neos.Flow.persistence.doctrine.secondLevelCache.

Example: Configuration for Doctrine second level cache:

Neos:
 Flow:
 persistence:
 doctrine:
 secondLevelCache:
 enable: true
 defaultLifetime: 3600
 regions:
 'my_entity_region': 7200

	3

	http://docs.doctrine-project.org/en/latest/reference/second-level-cache.html

Customizing Doctrine EntityManager

For any cases that are not covered with the above options, Flow provides two convenient signals
to hook into the setup of the doctrine EntityManager.
The beforeDoctrineEntityManagerCreation signal provides you with the DBAL connection, the
doctrine configuration and EventManager classes, that you can change before the actual
EntityManager is instanciated.
The afterDoctrineEntityManagerCreation signal provides the doctrine configuration and
EntityManager instance, in order to to further set options.

Note

All above configuration options through the settings are actually implemented as slots to the
before mentioned signals. If you want to take some look how this works, check the
NeosFlowPersistenceDoctrineEntityManagerConfiguration class.

Differences between Flow and plain Doctrine

The custom annotation driver used by Flow to collect mapping information from the code
makes a number of things easier, compared to plain Doctrine 2.

	Entity

	repositoryClass can be left out, if you follow the naming rules for your
repository classes explained above.

	Table

	name does not default to the unqualified entity classname, but a name is generated
from class name, package key and more elements to make it unique.

	Id

	Can be left out, as it is automatically generated, this means you also do not need
@GeneratedValue. Every entity will get a property injected that is filled with
an UUID upon instantiation and used as technical identifier.

If an @Id annotation is found, it is of course used as is and no magic will happen.

	Column

	Can usually be left out altogether, as the vital type information can be read from
the @var annotation on a class member.

Important

Since PHP does not differentiate between short and long strings, but databases do,
you must use @Column(type="text") if you intend to store more than 255
characters in a string property.

	OneToOne, OneToMany, ManyToOne, ManyToMany

	targetEntity can be omitted, it is read from the @var annotation on the property.
Relations to Value Objects will be cascade persist by default and relations to non
aggregate root entities will be cascade all by default.

	JoinTable, JoinColumn

	Can usually be left out completely, the needed information is gathered automatically
But when using a self-referencing association, you will need to help Flow a
little, so it doesn’t generate a join table with only one column.

Example: JoinTable annotation for a self-referencing annotation

/**
 * @var \Doctrine\Common\Collections\ArrayCollection<\Neos\Blog\Domain\Model\Post>
 * @ORM\ManyToMany
 * @ORM\JoinTable(inverseJoinColumns={@ORM\JoinColumn(name="related_id")})
 */
 protected $relatedPosts;

Without this, the created table would not contain two columns but only one, named
after the identifiers of the associated entities - which is the same in this case.

	DiscriminatorColumn, DiscriminatorMap

	Can be left out, as they are automatically generated.

The generation of this metadata is slightly more expensive compared to the plain Doctrine
AnnotationDriver, but since this information can be cached after being generated once,
we feel the gain when developing outweighs this easily.

Tip

Anything you explicitly specify in annotations regarding Doctrine, has precedence over
the automatically generated metadata. This can be used to fully customize the mapping
of database tables to models.

Here is an example to illustrate the things you can omit, due to the automatisms in the
Flow annotation driver.

Example: Annotation equivalents in Flow and plain Doctrine 2

An entity with only the annotations needed in Flow:

/**
 * @Flow\Entity
 */
class Post {

 /**
 * @var \Neos\Blog\Domain\Model\Blog
 * @ORM\ManyToOne(inversedBy="posts")
 */
 protected $blog;

 /**
 * @var string
 * @ORM\Column(length=100)
 */
 protected $title;

 /**
 * @var \DateTime
 */
 protected $date;

 /**
 * @var string
 * @ORM\Column(type="text")
 */
 protected $content;

 /**
 * @var \Doctrine\Common\Collections\ArrayCollection<\Neos\Blog\Domain\Model\Comment>
 * @ORM\OneToMany(mappedBy="post")
 * @ORM\OrderBy({"date" = "DESC"})
 */
 protected $comments;

The same code with all annotations needed in plain Doctrine 2 to result in the same
metadata:

/**
 * @ORM\Entity(repositoryClass="Neos\Blog\Domain\Model\Repository\PostRepository")
 * @ORM\Table(name="blog_post")
 */
class Post {

 /**
 * @var string
 * @ORM\Id
 * @ORM\Column(name="persistence_object_identifier", type="string", length=40)
 */
 protected $Persistence_Object_Identifier;

 /**
 * @var \Neos\Blog\Domain\Model\Blog
 * @ORM\ManyToOne(targetEntity="Neos\Blog\Domain\Model\Blog", inversedBy="posts")
 * @ORM\JoinColumn(name="blog_blog", referencedColumnName="persistence_object_identifier")
 */
 protected $blog;

 /**
 * @var string
 * @ORM\Column(type="string", length=100)
 */
 protected $title;

 /**
 * @var \DateTime
 * @ORM\Column(type="datetime")
 */
 protected $date;

 /**
 * @var string
 * @ORM\Column(type="text")
 */
 protected $content;

 /**
 * @var \Doctrine\Common\Collections\ArrayCollection<\Neos\Blog\Domain\Model\Comment>
 * @ORM\OneToMany(targetEntity="Neos\Blog\Domain\Model\Comment", mappedBy="post",
 cascade={"all"}, orphanRemoval=true)
 * @ORM\OrderBy({"date" = "DESC"})
 */
 protected $comments;

Schema management

Doctrine offers a Migrations system as an add-on part of its DBAL for versioning of
database schemas and easy deployment of changes to them. There exist a number of commands
in the Flow CLI toolchain to create and deploy migrations.

A Migration is a set of commands that bring the schema from one version to the next. In
the simplest form that means creating a new table, but it can be as complex as renaming a
column and converting data from one format to another along the way. Migrations can also
be reversed, so one can migrate up and down.

Each Migration is represented by a PHP class that contains the needed commands. Those
classes come with the package they relate to, they have a name that is based on the time
they were created. This allows correct ordering of migrations coming from different
packages.

Query the schema status

To learn about the current schema and migration status, run the following command:

$./flow flow:doctrine:migrationstatus

This will produce output similar to the following, obviously varying depending on the
actual state of schema and active packages:

Example: Migration status report

== Configuration
 >> Name: Doctrine Database Migrations
 >> Database Driver: pdo_mysql
 >> Database Name: flow
 >> Configuration Source: manually configured
 >> Version Table Name: flow_doctrine_migrationstatus
 >> Migrations Namespace: Neos\Flow\Persistence\Doctrine\Migrations
 >> Migrations Target Directory: /path/to/Data/DoctrineMigrations
 >> Current Version: 0
 >> Latest Version: 2011-06-13 22:38:37 (20110613223837)
 >> Executed Migrations: 0
 >> Available Migrations: 1
 >> New Migrations: 1

== Migration Versions
 >> 2011-06-13 22:38:37 (20110613223837) not migrated

Whenever a version number needs to be given to a command, use the short form as shown in
parentheses in the output above. The migrations directory in the output is only used when
creating migrations, see below for details on that.

Deploying migrations

On a pristine database it is very easy to create the tables needed with the following
command:

$./flow flow:doctrine:migrate

This will result in output that looks similar to the following:

Migrating up to 20110613223837 from 0

 ++ migrating 20110613223837

 -> CREATE TABLE flow_resource_resourcepointer (hash VARCHAR(255) NOT NULL, PRIMARY KEY(hash)) ENGINE = InnoDB
 -> ALTER TABLE flow_resource_resource ADD FOREIGN KEY (flow_resource_resourcepointer) REFERENCES flow_resource_resourcepointer(hash)

 ++ migrated (1.31s)

 ++ finished in 1.31
 ++ 1 migrations executed
 ++ 6 sql queries

This will deploy all migrations delivered with the currently active packages to the
configured database. During that process it will display all the SQL statements executed
and a summary of the deployed migrations at the and. You can do a dry run using:

$./flow flow:doctrine:migrate --dry-run

This will result in output that looks similar to the following:

Executing dry run of migration up to 20110613223837 from 0

 ++ migrating 20110613223837

 -> CREATE TABLE flow_resource_resourcepointer (hash VARCHAR(255) NOT NULL, PRIMARY KEY(hash)) ENGINE = InnoDB
 -> ALTER TABLE flow_resource_resource ADD FOREIGN KEY (flow_resource_resourcepointer) REFERENCES flow_resource_resourcepointer(hash)

 ++ migrated (0.09s)

 ++ finished in 0.09
 ++ 1 migrations executed
 ++ 6 sql queries

to see the same output but without any changes actually being done to the database. If you
want to inspect and possibly adjust the statements that would be run and deploy manually,
you can write to a file:

$./flow flow:doctrine:migrate --path <where/to/write/the.sql>

This will result in output that looks similar to the following:

Writing migration file to "<where/to/write/the.sql>"

Important

When actually making manual changes, you need to keep the flow_doctrine_migrationstatus
table updated as well! This is done with the flow:doctrine:migrationversion command.
It takes a --version option together with either an --add or --delete flag to
add or remove the given version in the flow_doctrine_migrationstatus table. It does
not execute any migration code but simply marks the given version as migrated or not.

Reverting migrations

The migrate command takes an optional --version option. If given, migrations will be
executed up or down to reach that version. This can be used to revert changes, even
completely:

$./flow flow:doctrine:migrate --version <version> --dry-run

This will result in output that looks similar to the following:

Executing dry run of migration down to 0 from 20110613223837

 -- reverting 20110613223837

 -> ALTER TABLE flow_resource_resource DROP FOREIGN KEY
 -> DROP TABLE flow_resource_resourcepointer
 -> DROP TABLE flow_resource_resource
 -> DROP TABLE flow_security_account
 -> DROP TABLE flow_resource_securitypublishingconfiguration
 -> DROP TABLE flow_policy_role

 -- reverted (0.05s)

 ++ finished in 0.05
 ++ 1 migrations executed
 ++ 6 sql queries

Executing or reverting a specific migration

Sometimes you need to deploy or revert a specific migration, this is possible as well.

$./flow flow:doctrine:migrationexecute --version <20110613223837> --direction <direction> --dry-run

This will result in output that looks similar to the following:

-- reverting 20110613223837

 -> ALTER TABLE flow_resource_resource DROP FOREIGN KEY
 -> DROP TABLE flow_resource_resourcepointer
 -> DROP TABLE flow_resource_resource
 -> DROP TABLE flow_security_account
 -> DROP TABLE flow_resource_securitypublishingconfiguration
 -> DROP TABLE flow_policy_role

-- reverted (0.41s)

As you can see you need to specify the migration --version you want to execute. If you
want to revert a migration, you need to give the --direction as shown above, the
default is to migrate “up”. The --dry-run and and --output options work as with
flow:doctrine:migrate.

Creating migrations

Migrations make the schema match when a model changes, but how are migrations created?
The basics are simple, but rest assured that database details and certain other things
make sure you’ll need to practice… The command to scaffold a migration is the following:

$./flow flow:doctrine:migrationgenerate

This will result in output that looks similar to the following:

Generated new migration class!

Do you want to move the migration to one of these packages?
 [0] Don't Move
 [1] Neos.Diff
 [2] …

You should pick the package that your new migration covers, it will then be moved as requested.
The command will output the path to generated migration and suggest some next steps to take.

Important

If you decide not to move the file, it will be put into Data/DoctrineMigrations/.

That directory is only used when creating migrations. The migrations visible to the system
are read from Migrations/<DbPlatForm> in each package. The <DbPlatform> represents the
target platform, e.g. Mysql (as in Doctrine DBAL but with the first character uppercased).

Looking into that file reveals a basic migration class already filled with the differences
detected between the current schema and the current models in the system:

Example: Migration generated based on schema/model differences

namespace Neos\Flow\Persistence\Doctrine\Migrations;

use Doctrine\DBAL\Migrations\AbstractMigration,
 Doctrine\DBAL\Schema\Schema;

/**
 * Auto-generated Migration: Please modify to your need!
 */
class Version20110624143847 extends AbstractMigration {

 /**
 * @param Schema $schema
 * @return void
 */
 public function up(Schema $schema) {
 // this up() migration is autogenerated, please modify it to your needs
 $this->abortIf($this->connection->getDatabasePlatform()->getName() != "mysql");

 $this->addSql("CREATE TABLE party_abstractparty (…) ENGINE = InnoDB");
 }

 /**
 * @param Schema $schema
 * @return void
 */
 public function down(Schema $schema) {
 // this down() migration is autogenerated, please modify it to your needs
 $this->abortIf($this->connection->getDatabasePlatform()->getName() != "mysql");

 $this->addSql("DROP TABLE party_abstractparty");
 }
}

To create an empty migration skeleton, pass --diff-against-current 0 to the command.

After you generated a migration, you will probably need to clean up a little, as there
might be differences being picked up that are not useful or can be optimized. An example
is when you rename a model: The migration will drop the old table and create the new one,
but what you want instead is to rename the table. Also you must to make sure each finished
migration file only deals with one package and then move it to the Migrations directory
in that package. This way different packages can be mixed and still a reasonable migration
history can be built up.

Ignoring tables

For tables that are not known to the schema because they are code-generated or come from a
different system sharing the same database, the flow:doctrine:migrationgenerate command
will generate corresponding DROP TABLE statements.
In this case you can use the --filter-expression flag to generate migrations only for tables
matching the given pattern:

$./flow flow:doctrine:migrationgenerate --filter-expression '^your_package_.*'

Will only affect tables starting with “your_package_”.

To permanently skip certain tables the ignoredTables setting can be used:

Neos:
 Flow:
 persistence:
 doctrine:
 migrations:
 ignoredTables:
 'autogenerated_.*': TRUE
 'wp_.*: TRUE

Will ignore table starting with “autogenerated_” or “wp_” by default (the –filter-expression flag
overrules this setting).

Schema updates without migrations

Migrations are the recommended and preferred way to bring your schema up to date. But
there might be situations where their use is not possible (e.g. no migrations are
available yet for the RDBMS you are using) or not wanted (because of, um… something).
The there are two simple commands you can use to create and update your schema.

To create the needed tables you can call ./flow flow:doctrine:create and it will
create all needed tables. If any target table already exists, an error will be the
result.

To update an existing schema to match with the current mapping metadata (i.e. the current
model structure), use ./flow flow:doctrine:update to have missing items (fields,
indexes, …) added. There is a flag to disable the safe mode used by default. In safe mode,
Doctrine tries to keep existing data as far as possible, avoiding lossy actions.

Warning

Be careful, the update command might destroy data, as it could drop tables and fields
irreversibly.
It also doesn’t respect the ignoredTables settings (see previous section).

Both commands also support --output <write/here/the.sql> to write the SQL
statements to the given file instead of executing it.

Tip

If you created or updated the schema this way, you should afterwards execute
flow:doctrine:migrationversion --version all --add to avoid migration
errors later.

Doctrine Connection Wrappers - Master/Slave Connections

Doctrine 2 allows to create Connection wrapper classes, that change the way Doctrine connects
to your database. A common use case is a master/slave replication setup, with one master server
and several slaves that share the load for all reading queries.
Doctrine already provides a wrapper for such a connection and you can configure Flow to use
that connection wrapper by setting the following options in your packages Settings.yaml:

Neos:
 Flow:
 persistence:
 backendOptions:
 wrapperClass: 'Doctrine\DBAL\Connections\MasterSlaveConnection'
 master:
 host: '127.0.0.1' # adjust to your master database host
 dbname: 'master' # adjust to your database name
 user: 'user' # adjust to your database user
 password: 'pass' # adjust to your database password
 slaves:
 slave1:
 host: '127.0.0.1' # adjust to your slave database host
 dbname: 'slave1' # adjust to your database name
 user: 'user' # adjust to your database user
 password: 'pass' # adjust to your database password

With this setup, Doctrine will use one of the slave connections picked once per request randomly
for all queries until the first writing query (e.g. insert or update) is executed. From that point
on the master server will be used solely. This is to solve the problems of replication lag and
possibly inconsistent query results.

Tip

You can also setup the master database as a slave, if you want to also use it for load-balancing
reading queries. However, this might lead to higher load on the master database and should be
well observed.

Known issues

	When using PostgreSQL the use of the object, and array mapping types is not possible, this is
caused by Doctrine using serialize() to prepare data that is stored in text column (contained
zero bytes truncate the string and lead to error during hydration). 9

The Flow mapping types flow_json_array and objectarray provide solutions for this.

	When using PostgreSQL the use of the json_array mapping type can lead to issues when queries
need comparisons on such columns (e.g. when grouping or doing distinct queries), because the json
type used by Doctrine doesn’t support comparisons.

The Flow mapping type flow_json_array uses the jsonb type available as of PostgreSQL 9.4,
circumventing this restriction.

Generic Persistence

What is now called Generic Persistence, used to be the only persistence layer in Flow.
Back in those days there was no ORM available that fit our needs. That being said, with
the advent of Doctrine 2, your best bet as a PHP developer is to use that instead of any
home-brewn ORM.

When your target is not a relational database, things look slightly different, which is
why the “old” code is still available for use, primarily by alternative backends like the
ones for CouchDB or Solr, that are available. Using the Generic persistence layer to
target a RDBMS is still possible, but probably only useful for rare edge cases.

Switching to Generic Persistence

To switch to Generic persistence you need to configure Flow like this.

Objects.yaml:

Neos\Flow\Persistence\PersistenceManagerInterface:
 className: 'Neos\Flow\Persistence\Generic\PersistenceManager'

Neos\Flow\Persistence\QueryResultInterface:
 scope: prototype
 className: 'Neos\Flow\Persistence\Generic\QueryResult'

Settings.yaml:

Flow:
 persistence:
 doctrine:
 enable: FALSE

When installing generic backend packages, like CouchDB, the needed object configuration
should be contained in them, for the connection settings, consult the package’s
documentation.

Metadata mapping

The persistence layer needs to know a lot about your code to be able to persist it. In
Flow, the needed data is given in the source code through annotations, as this aligns
with the philosophy behind the framework.

Annotations for the Generic Persistence

The following table lists all annotations used by the persistence framework with their name,
scope and meaning:

Persistence-related code annotations

	Annotation

	Scope

	Meaning

	Entity

	Class

	Declares a class as an Entity.

	ValueObject

	Class

	Declares a class as a Value Object, allowing the
persistence framework to reuse an existing object if one
exists.

	@var

	Variable

	Is used to detect the type a variable has.

	Transient

	Variable

	Makes the persistence framework ignore the variable.
Neither will it’s value be persisted, nor will it be
touched during reconstitution.

	Identity

	Variable

	Marks the variable as being relevant for determining
the identity of an object in the domain.

	Lazy

	Class,
Variable

	When reconstituting the value of this property will be
loaded only when the property is used. Note: This is only
supported for properties of type \SplObjectStorage
and objects (marked with Lazy in their source code,
see below).

Enabling Lazy Loading

If a class should be able to be lazy loaded by the PDO backend, you need to annotate it
with @lazy in the class level docblock. This is done to avoid creating proxy classes
for objects that should never be lazy loaded anyway. As soon as that annotation is found,
AOP is used to weave lazy loading support into your code that intercepts all method calls
and initializes the object before calling the expected method. Such a proxy class is a
subclass of your class, as such it work fine with type hinting and checks and can be used
the same way as the original class.

To actually mark a property for lazy loading, you need to add the @lazy annotation to
the property docblock in your code. Then the persistence layer will skip loading the data
for that object and the object properties will be thawed when the object is actually used.

How @lazy annotations interact

	Class

	Property

	Effect

	Lazy

	Lazy

	The class’ instances will be lazy loadable, and properties of
that type will be populated with a lazy loading proxy.

	Lazy

	none

	The class’ instances will be lazy loadable, but that
possibility will not be used.

	none

	Lazy

	\SplObjectStorage will be reconstituted as a lazy loading
proxy, for other types nothing happens.

Properties of type \SplObjectStorage can always be
lazy-loaded by adding the Lazy annotation on the property
only.

How and if lazy-loading is handled by alternative backends is
up to the implementation.

Schema management

Whether other backends implement automatic schema management is up to the developers,
consult the documentation of the relevant backend for details.

Inside the Generic Persistence

To the domain code the persistence handling transparent, aside from the need to add a few
annotations. The custom repositories are a little closer to the inner workings of the
framework, but still the inner workings are very invisible. This is how it is supposed to
be, but a little understanding of how persistence works internally can help understand
problems and develop more efficient client code.

Persisting a Domain Object

After an object has been added to a repository it will be seen when Flow calls
persistAll() at the end of a script run. Internally all instances implementing the
\Neos\Flow\Persistence\RepositoryInterface will be fetched and asked for the objects
they hold. Those will then be handed to the persistence backend in use and processed by
it.

Flow defines interfaces for persistence backends and queries, the details of how objects
are persisted and queried are up to the persistence backend implementation. Have a look at
the documentation of the respective package for more information. The following diagram
shows (most of) the way an object takes from creation until it is persisted when using the
suggested process:

[image: Object persistence process]
Object persistence process

Keep in mind that the diagram omits some details like dirty checking on objects and how
exactly objects and their properties are stored.

Querying the Storage Backend

As we saw in the introductory example there is a query mechanism available that provides
easy fetching of objects through the persistence framework. You ask for instances of a
specific class that match certain filters and get back an array of those reconstituted
objects. Here is a diagram of the internal process when using the suggested process:

[image: Object querying and reconstitution process]
Object querying and reconstitution process

For the developer the complexity is hidden between the query’s execute() method and
the array of objects being returned.

	4

	An alternative would have been to do an implicit persist call before a query, but
that seemed to be confusing.

	5

	https://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html

	6

	https://github.com/doctrine/doctrine2/issues/3579

	7

	https://doctrine-orm.readthedocs.org/en/latest/reference/events.html

	8

	https://doctrine-orm.readthedocs.org/en/latest/reference/filters.html#filters

	9

	http://www.doctrine-project.org/jira/browse/DDC-3241

HTTP Foundation

Most applications which are based on Flow are web applications. As the HTTP protocol is the foundation of the
World Wide Web, it also plays an important role in the architecture of the Flow framework.

This chapter describes the mechanics behind Flow’s request-response model, how it relates to the Model View
Controller framework and which API functions you can use to deal with specific aspects of the HTTP request and response.

The HTTP 1.1 Specification

Although most people using or even developing for the web are aware of the fact that the Hypertext Transfer Protocol is
responsible for carrying data around, considerably few of them have truly concerned themselves with the HTTP 1.1
specification.

The specification, RFC 2616 [http://tools.ietf.org/html/rfc2616], has been published in 1999 already but it is relevant today more than ever. If you’ve
never fully read it, we recommend that you do so. Although it is a long read, it is important to understand the
intentions and rules of the protocol before you can send cache headers or response codes in good conscience, or even
claim that you developed a true REST [http://en.wikipedia.org/wiki/Representational_state_transfer] service.

Application Flow

The basic walk through a Flow-based web application is as follows:

	the browser sends an HTTP request to a webserver

	the webserver calls Web/index.php and passes control over to Flow

	the Bootstrap initializes the bare minimum and passes control to a suitable
request handler

	by default, the HTTP Request Handler takes over and runs a boot sequence
which initializes all important parts of Flow

	the HTTP Request Handler builds an HTTP Request and Response object. The
Request object contains all important properties of the real HTTP request.
The Response object in turn is empty and will be filled with information by a
controller at a later point

	the HTTP Request Handler initializes the
HTTP Component Chain, a set of independent units that have
access to the current HTTP request and response and can share information amongst each other.
The chain is fully configurable, but by default it consists of the following steps:

	the routing component invokes the Router to determine which
controller and action is responsible for processing the request. This information (controller name, action name,
arguments) is stored in the ComponentContext

	the dispatching component tries to invoke the corresponding controller action via the
Dispatcher

	the controller, usually an Action Controller, processes the
request and modifies the given HTTP Response object which will, in the end, contain the content to display (body) as
well as any headers to be passed back to the client

	the standardsCompliance component tries to make the HTTP Response standards compliant by adding required HTTP
headers and setting the correct status code (if not already the case)

	Finally the RequestHandler sends the HTTP Response back to the browser

In practice, there are a few more intermediate steps being carried out, but in
essence, this is the path a request is taking.

[image: Simplified application flow]
Simplified application flow

The Response is modified within the HTTP Component Chain, visualized by the highlighted “loop” block above. The
component chain is configurable. If no components were registered every request would result in a blank HTTP Response.
The component chain is a component too, so chains can be nested. By default the base component chain is divided into
three sub chains “preprocess”, “process” and “postprocess”.
The “preprocess” chain is empty by default, the “process” chain contains components for “routing” and “dispatching” and
the “postprocess” chain contains a “standardsCompliance” component:

[image: Default HTTP Component Chain]
Default HTTP Component Chain

The next sections shed some light on the most important actors of this application flow.

Request Handler

The request handler is responsible for taking a request and responding in a manner the client understands. The default
HTTP Request Handler invokes the Bootstrap runtime sequence and initializes the HTTP Component chain. Other
request handlers may choose a completely different way to handle requests.
Although Flow also supports other types of requests (most notably, from the command line interface), this chapter
only deals with HTTP requests.

Flow comes with a very slim bootstrap, which results in few code being executed before control is handed over to
the request handler. This pays off in situations where a specialized request handler is supposed to handle specific
requests in a very effective way. In fact, the request handler is responsible for executing big parts of the
initialization procedures and thus can optimize the boot process by choosing only the parts it actually needs.

A request handler must implement the RequestHandler interface
interface which, among others, contains the following methods:

public function handleRequest();

public function canHandleRequest();

public function getPriority();

On trying to find a suitable request handler, the bootstrap asks each registered request handler if it can handle the
current request using canHandleRequest() – and if it can, how eager it is to do so through getPriority().
Request handlers responding with a high number as their priority, are preferred over request handlers reporting a lower
priority. Once the bootstrap has identified a matching request handler, it passes control to it by calling its
handleRequest() method.

Request handlers must first be registered in order to be considered during the resolving phase. Registration is done in
the Package class of the package containing the request handler:

class Package extends BasePackage {

 public function boot(\Neos\Flow\Core\Bootstrap $bootstrap) {
 $bootstrap->registerRequestHandler(new \Acme\Foo\BarRequestHandler($bootstrap));
 }

}

Component Chain

Instead of registering a new RequestHandler the application workflow can also be altered by a custom HTTP Component.
A HTTP component must implement the Component interface
that defines the handle() method:

use Neos\Flow\Http\Component\ComponentInterface;
use Neos\Flow\Http\Component\ComponentContext;

/**
 * A sample HTTP component that intercepts the default handling and returns "bar" if the request contains an argument "foo"
 */
class SomeHttpComponent implements ComponentInterface {

 /**
 * @var array
 */
 protected $options;

 /**
 * @param array $options
 */
 public function __construct(array $options = array()) {
 $this->options = $options;
 }

 /**
 * @param ComponentContext $componentContext
 * @return void
 */
 public function handle(ComponentContext $componentContext) {
 $httpRequest = $componentContext->getHttpRequest();
 if (!$httpRequest->hasArgument('foo')) {
 return;
 }
 $httpResponse = $componentContext->getHttpResponse();
 $httpResponse->setContent('bar');
 }
}

The ComponentContext contains a reference to the current HTTP request and response, besides it can be used to
pass arbitrary parameters to successive components.
To activate a component, it must be configured in the Settings.yaml:

Neos:
 Flow:
 http:
 chain:
 'process':
 chain:
 'custom':
 position: 'before routing'
 component: 'Some\Package\Http\SomeHttpComponent'
 componentOptions:
 'someOption': 'someValue'

With the position directive the order of a component within the chain can be defined. In this case the new component
will be handled before the routing component that is configured in the Neos.Flow package.
componentOptions is an optional key/value array with options that will be passed to the component’s constructor.

Interrupting the chain

Sometimes it is necessary to stop processing of a chain in order to prevent successive components to be executed.
For example if one wants to handle an AJAX request and prevent the default dispatching. This can be done by setting the
cancel parameter of the ComponentChain:

/**
 * @param ComponentContext $componentContext
 * @return void
 */
public function handle(ComponentContext $componentContext) {
 // check if the request should be handled and return otherwise

 $componentContext->setParameter(\Neos\Flow\Http\Component\ComponentChain::class, 'cancel', TRUE);
}

Note that component chains can be nested. By default the three sub chains preprocess, process and postprocess
are configured. Setting the cancel parameter only affects the currently processed chain.
With the examples from above the new component is added to the process chain. This way the postprocess chain is
still handled even if the new component cancels the current chain.

Request

The Neos\Flow\Http\Request class is, like most other classes in the Http sub package, a relatively close match
of a request according to the HTTP 1.1 specification. You’ll be best off studying the API of the class and reading the
respective comments for getting an idea about the available functions. That being said, we’ll pick a few important
methods which may need some further explanation.

Constructing a Request

You can, in theory, create a new Request instance by simply using the new operator and passing the required
arguments to the constructor. However, there are two static factory methods which make life much easier. We recommend
using these instead of the low-level constructor method.

Warning

You should only create a Request manually if you want to send out requests or if you know exactly what you are
doing. The created Request will not have any HTTP Components affect him and might therefore lead to
unexpected results, like the trusted proxy headers X-Forwarded-* not being applied and the Request providing
wrong protocol, host or client IP address.
If you need access to the current HTTP Request or Response, instead inject the Bootstrap and
get the HttpRequest and HttpResponse through the getActiveRequestHandler().

create()

The method create() accepts an URI, the request method, arguments and a few more parameters and returns a new
Request instance with sensible default properties set. This method is best used if you need to create a new
Request object from scratch without taking any real HTTP request into account.

createFromEnvironment()

The second method, createFromEnvironment(), take the environment provided by PHP’s superglobals and specialized
functions into account. It creates a Request instance which reflects the current HTTP request received from the web
server. This method is best used if you need a Request object with all properties set according to the current
server environment and incoming HTTP request.
Note though, that you should not expect this Request to match the current Request, since the latter will still
have been affected by some HTTP Components. If you need the current Request, get it from the RequestHandler instead.

Creating an ActionRequest

In order to dispatch a request to a controller, you need an ActionRequest.
Such a request is always bound to an Http\Request:

use Neos\Flow\Core\Bootstrap;
use Neos\Flow\Http\HttpRequestHandlerInterface;
use Neos\Flow\Mvc\ActionRequest;

// ...

/**
 * @var Bootstrap
 * @Flow\Inject
 */
protected $bootstrap;

// ...

$requestHandler = $this->bootstrap->getActiveRequestHandler();
if ($requestHandler instanceof HttpRequestHandlerInterface) {
 $actionRequest = new ActionRequest($requestHandler->getHttpRequest());
 // ...
}

Arguments

The request features a few methods for retrieving and setting arguments. These arguments are the result of merging any
GET, POST and PUT arguments and even the information about uploaded files. Be aware that these arguments have not been
sanitized or further processed and thus are not suitable for being used in controller actions. If you, however, need to
access the raw data, these API function are the right way to retrieve them.

Arguments provided by POST or PUT requests are usually encoded in one or the other way. Flow detects the encoding
through the Content-Type header and decodes the arguments and their values automatically.

getContent()

You can access the request body easily by calling the getContent() method. For performance reasons you may also
retrieve the content as a stream instead of a string. Please be aware though that, due to how input streams work in PHP,
it is not possible to retrieve the content as a stream a second time.

Media Types

The best way to determine the media types mentioned in the Accept header of a request is to call the
\Neos\Flow\Http\Helper\MediaTypeHelper::determineAcceptedMediaTypes() method.
There is also a method implementing content negotiation in a convenient way: just pass a list of supported
formats to \Neos\Flow\Http\Helper\MediaTypeHelper::negotiateMediaType() and in return you’ll get the
media type best fitting according to the preferences of the client:

$preferredType = \Neos\Flow\Http\Helper\MediaTypeHelper::negotiateMediaType(
 \Neos\Flow\Http\Helper\MediaTypeHelper::determineAcceptedMediaTypes($request),
 array('application/json', 'text/html') // These are the accepted media types
);

Request Methods

Flow supports all valid request methods, namely CONNECT, DELETE, GET, HEAD, OPTIONS, PATCH,
POST, PUT and TRACE.
Due to limited browser support and restrictive firewalls one sometimes need to tunnel request methods:
By sending a POST request and specifying the __method argument, the request method can be overridden:

<form method="POST">
 <input type="hidden" name="__method" value="DELETE" />
</form>

Additionally Flow respects the X-HTTP-Method respectively X-HTTP-Method-Override header.

Trusted Proxies

If your server is behind a reverse proxy or a CDN, some of the request information like the the host name, the port,
the protocol and the original client IP address are provided via additional request headers.
Since those headers can also easily be sent by an adversary, possibly bypassing security measurements, you should make
sure that those headers are only accepted from trusted proxies.

For this, you can configure a list of proxy IP address ranges in CIDR notation that are allowed to provide such headers,
and which headers specifically are accepted for overriding those request information:

Neos:
 Flow:
 http:
 trustedProxies:
 proxies:
 - '216.246.40.0/24'
 - '216.246.100.0/24'

 headers:
 clientIp: 'X-Forwarded-For'
 host: 'X-Forwarded-Host'
 port: 'X-Forwarded-Port'
 proto: 'X-Forwarded-Proto'

This would mean that only the X-Forwarded-* headers are accepted and only as long as those come from one of the
IP ranges 216.246.40.0-255 or 216.246.100.0-255. If you are using the standardized Forwarded Header [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Forwarded], you
can also simply set trustedProxies.headers to 'Forwarded', which is the same as setting all four properties to
this value.
By default, no proxies are trusted (unless the environment variable FLOW_HTTP_TRUSTED_PROXIES is set) and only the
direct request informations will be used.
If you specify trusted proxy addresses, by default only the X-Forwarded-* headers are accepted.

Note

On some container environments like ddev, the container acts as a proxy to provide port mapping and hence needs
to be allowed in this setting. Otherwise the URLs generated will likely not work and end up with something along
the lines of ‘https://flow.ddev.local:80’. Therefore you probably need to set Neos.Flow.http.trustedProxies.proxies
setting to ‘*’ in your Development environment Settings.yaml.

You can also specify the list of IP addresses or address ranges in comma separated format, which is useful for using in the
environment variable FLOW_HTTP_TRUSTED_PROXIES:

Neos:
 Flow:
 http:
 trustedProxies:
 proxies: '216.246.40.0/24,216.246.100.0/24'

Also, for backwards compatibility the following headers are trusted for providing the client IP address:

Client-Ip, X-Forwarded-For, X-Forwarded, X-Cluster-Client-Ip, Forwarded-For, Forwarded

Those headers will be checked from left to right and the first set header will be used for determining the client address.

Response

Being the counterpart to the request, the Response class represents the HTTP response. Its most important function
is to contain the response body and the response status. Again, it is recommended to take a closer look at the actual
class before you start using the API in earnest.

The Response class features a few specialities, we’d like to mention at this point:

Dates

The dates passed to one of the date-related methods must either be a RFC 2822 parsable date string or a PHP DateTime
object. Please note that all methods returning a date will do so in form of a DateTime object.

According to RFC 2616 [http://tools.ietf.org/html/rfc2616] all dates must be given in Coordinated Universal Time [http://en.wikipedia.org/wiki/Coordinated_Universal_Time], also known as UTC. UTC is also
sometimes referred to as GMT, but in fact Greenwich Mean Time [http://en.wikipedia.org/wiki/Greenwich_Mean_Time] is not the correct time standard to use. Just to
complicate things a bit more, according to the standards the HTTP headers will contain dates with the timezone declared
as GMT – which in reality refers to UTC.

Flow will always return dates related to HTTP as UTC times. Keep that in mind if you pass dates from a different
standard and then retrieve them again: the DateTime objects will mark the same point in time, but have a different
time zone set.

Headers

Both classes, Request and Response inherit methods from the Message class. Among them are functions for
retrieving and setting headers. If you need to deal with headers, please have a closer look at the Headers class
which not only contains setters and getters but also some specialized cookie handling and cache header support.

In general, Cache-Control directives can be set through the regular set() method. However, a more convenient way
to tweak single directives without overriding previously set values is the setCacheControlDirective() method. Here
is an example – from the context of an Action Controller – for setting the max-age directive one hour:

$headers = $this->request->getHttpRequest()->getHeaders();
$headers->setCacheControlDirective('max-age', 3600);

Cookies

The HTTP foundation provides a very convenient way to deal with cookies. Instead of calling the PHP cookie functions
(like setcookie()), we recommend using the respective methods available in the Request and Response classes.

Like requests and responses, a cookie also is represented by a PHP class. Instead of working on arrays with values,
instances of the Cookie class are used.
In order to set a cookie, just create a new Cookie object and add it to the HTTP response:

public function myAction() {
 $cookie = new Cookie('myCounter', 1);
 $this->response->setCookie($cookie);
}

As soon as the response is sent to the browser, the cookie is sent as part of it. With the next request, the user agent
will send the cookie through the Cookie header. These headers are parsed automatically and can be retrieved from the
Request object:

public function myAction() {
 $httpRequest = $this->request->getHttpRequest();
 if ($httpRequest->hasCookie('myCounter')) {
 $cookie = $httpRequest->getCookie('myCounter');
 $this->view->assign('counter', $cookie->getValue());
 }
}

The cookie value can be updated and re-assigned to the response:

public function myAction() {
 $httpRequest = $this->request->getHttpRequest();
 if ($httpRequest->hasCookie('myCounter')) {
 $cookie = $httpRequest->getCookie('myCounter');
 } else {
 $cookie = new Cookie('myCounter', 1);
 }
 $this->view->assign('counter', $cookie->getValue());

 $cookie->setValue((integer)$cookie->getValue() + 1);
 $this->response->setCookie($cookie);
}

Finally, a cookie can be deleted by calling the expire() method:

public function myAction() {
 $httpRequest = $this->request->getHttpRequest();
 $cookie = $httpRequest->getCookie('myCounter');
 $cookie->expire();
 $this->response->setCookie($cookie);
}

Uri

The Http sub package also provides a class representing a Unified Resource Identifier, better known as URI.
The difference between a URI and a URL is not as complicated as you might think. “URI” is more generic, so URLs are URIs
but not the other way around. A URI identifies a resource by its name or location.
But it does not have to specify the representation of that resource – URLs do that.
Consider the following examples:

A URI specifying a resource:

	http://flow.neos.io/images/logo

A URL specifying two different representations of that resource:

	http://flow.neos.io/images/logo.png

	http://flow.neos.io/images/logo.gif

Throughout the framework we use the term URI instead of URL because it is more generic and more often than not,
the correct term to use.

All methods in Flow returning a URI will do so in form of a URI object. Most methods requiring a URI will also
accept a string representation.

You are encouraged to use the Uri class for your own purposes – you’ll get a nice API and validation for free!

Virtual Browser

The HTTP foundation comes with a virtual browser which allows for sending and receiving HTTP requests and responses.
The browser’s API basically follows the functions of a typical web browser. The requests and responses are used in form
of Http\Request and Http\Response instances, similar to the requests and responses used by Flow’s request
handling mechanism.

Request Engines

The engine responsible for actually sending the request is pluggable. Currently there are two engines delivered with
Flow:

	InternalRequestEngine simulates requests for use in functional tests

	CurlEngine uses the cURL extension to send real requests to other servers

Sending a request and processing the response is a matter of a few lines:

/**
 * A sample controller
 */
class MyController extends ActionController {

 /**
 * @Flow\Inject
 * @var \Neos\Flow\Http\Client\Browser
 */
 protected $browser;

 /**
 * @Flow\Inject
 * @var \Neos\Flow\Http\Client\CurlEngine
 */
 protected $browserRequestEngine;

 /**
 * Some action
 */
 public function testAction() {
 $this->browser->setRequestEngine($this->browserRequestEngine);
 $response = $this->browser->request('https://www.flowframework.io');
 return ($response->hasHeader('X-Flow-Powered') ? 'yes' : 'no');
 }
}

As there is no default engine selected for the browser, you need to set one yourself. Of course you can use the advanced
Dependency Injection techniques (through Objects.yaml) for injecting an engine into the browser you use.

Also note that the virtual browser is of scope Prototype in order to support multiple browsers with possibly different
request engines.

Automatic Headers

The virtual browser allows for automatically sending specified headers along with every request. Simply pass the header
to the browser as follows:

$browser->addAutomaticRequestHeader('Accept-Language', 'lv');

You can remove automatic headers likewise:

$browser->removeAutomaticRequestHeader('Accept-Language');

Functional Testing

The base test case for functional test cases already provides a browser which you can use for testing controllers and
other application parts which are accessible via HTTP. This browser has the InternalRequestEngine set by default:

/**
 * Some functional tests
 */
class SomeTest extends \Neos\Flow\Tests\FunctionalTestCase {

 /**
 * @var boolean
 */
 protected $testableHttpEnabled = TRUE;

 /**
 * Send a request to a controller of my application.
 * Hint: The host name is not evaluated by Flow and thus doesn't matter
 *
 * @test
 */
 public function someTest() {
 $response = $this->browser->request('http://localhost/Acme.Demo/Foo/bar.html');
 $this->assertContains('it works', $response->getContent());
 }

}

Model View Controller

Flow promotes the use of the Model View Controller [http://en.wikipedia.org/wiki/Model–view–controller]
pattern which clearly separates the information, representation and mediation into
separated building blocks. Although the design pattern and its naïve implementation
are relatively simple, a capable MVC framework also takes care of more complex tasks
such as input sanitizing, validation, form and upload handling and much more.

This chapter puts Flow’s MVC framework into context with the HTTP request / response
mechanism, explains how to develop controllers and describes various features of
the framework.

HTTP

All action starts with an HTTP request sent from a client. The request contains
information about the resource to retrieve or process, the action to take and various
various parameters and headers. Flow converts the raw HTTP request into an HTTP
Request object and, by invoking the Routing mechanism, determines which
controller is responsible for processing the request and creating a matching
response. A dispatcher then passes an internal to the controller and gets a response
in return which can be sent to back to the client.

If you haven’t done already, we recommend that you read the chapter about Flow’s
HTTP Foundation. It contains more detailed information about the application flow and
the specific parts of the HTTP API.

Action Request

A typical application contains controllers providing one or more actions. While
HTTP requests and responses are fine for communication between clients and servers,
Flow uses a different kind of request internally to communicate with a controller,
called Action Request. The default HTTP request handler asks the router to
extract some information from the HTTP request and build an Action Request.

The Action Request contains the all the necessary details for calling the controller
action which was requested by the client:

	the package key and optionally sub namespace of the package containing the
controller supposed to handle the request

	the controller name

	the action name

	any arguments which are passed to the action

	the format of the expected response

With this information in place, the request handler can ask the Dispatcher to
pass control to the specified controller.

Dispatcher

The Dispatcher has the function to invoke a controller specified in the given
request and make sure that the request was processed correctly. The Dispatcher class
provides one important method:

public function dispatch(RequestInterface $request, ResponseInterface $response) {

On calling this method, the Dispatcher resolves the controller class name of the
controller mentioned in the request object and calls its processRequest()
method. A fresh Response object is also passed to the controller which is
expected to deliver its response data by calling the respective setter methods on
that object.

Each request carries a dispatched flag which is set or unset by the controller.
The Action Controller for example sets this flag by default and only unsets it if
an action initiated a forward to another action or controller. If the flag is not
set, the Dispatcher assumes that the request object has been updated with a new
controller, action or arguments and that it should try again to dispatch the request.
If dispatching the request did not succeed after several trials, the Dispatcher
will throw an exception.

Sub Requests

An Http\Request object always reflects the original HTTP request sent by the
client. It is not possible to create an HTTP sub request because requests which
are passed along within the application must be instances of Mvc\ActionRequest.
Creating an Action Request as a sub request of the original HTTP Request is simple,
although you rarely need to do that:

$actionRequest = new ActionRequest($httpRequest);

An Action Request always holds a reference to a parent request. In most cases
the hierarchy is shallow and the Action Request is just a direct sub request of
the HTTP Request. In the context of a controller, it is easy to get a hold of the
parent request:

public function fooAction() {
 $parentRequest = $this->request->getParentRequest();
 $httpRequest = $this->request->getHttpRequest();
 // in case of a shallow hierarchy, $parentRequest == $httpRequest
}

In a more complex scenario, an Action Request can be a sub request of another
Action Request. This is the case in most implementations of plugins, widgets or
other inline elements of a rendered page because each of them is a part of the
whole and can be arbitrarily nested. Each element (plugin, widget …) needs its own
Action Request instance in order to keep track of invocation details like arguments
and other context information.

A sub request can be created manually by passing the parent request to the
constructor of the new Action Request:

$subRequest = new ActionRequest($parentRequest);

The top level Action Request (just below the HTTP Request) is referred to as the
Main Request:

public function fooAction() {
 $parentRequest = $this->request->getParentRequest();
 $httpRequest = $this->request->getHttpRequest();
 $mainRequest = $this->request->getMainRequest();

 if ($this->request === $mainRequest) {
 $message = 'This is the main request';
 }

 // same like above:
 if ($this->request->isMainRequest()) {
 $message = 'This is the main request';
 }
}

Manual creation of sub requests is rarely necessary. In most cases the framework
will take care of creating and managing sub requests if plugins or widgets are in
the game.

Controllers

A controller is responsible for preparing a model and collecting the necessary data
which should be returned as a response. It also controls the application flow and
decided if certain operations should be executed and how the application should
proceed, for example after the user has submitted a form.

A controller should only sparingly contain logic which goes beyond these tasks.
Operations which belong to the domain of the application should be rather be
implemented by domain services. This allows for a clear separation of application
flow and business logic and enables other parts of the application (for example
web services) to execute these operations through a well-defined API.

A controller suitable for being used in Flow needs to implement the
Mvc\Controller\ControllerInterface. At the bare minimum it must provide a
processRequest() method which accepts a request and response.

If needed, custom controllers can be implemented in a convenient way by extending
the Mvc\Controller\AbstractController class. The most common case though is to
use the Action Controller provided by the framework.

Action Controller

Most web applications will interact with the client through execution of specific
actions provided by an Action Controller. Flow provides a base class which
contains all the logic to map and validate arguments found in the raw request to
method arguments of an action. It also provides various convenience methods which
are typically needed in Action Controller implementations.

A Simple Action

The most simple way to implement an action is to extend the ActionController class,
declare an action method and return a plain string as the response:

namespace Acme\Demo\Controller;
use Neos\Flow\Mvc\Controller\ActionController;

class HelloWorldController extends ActionController {

 /**
 * The default action of this controller.
 *
 * @return string
 */
 public function indexAction() {
 return 'Hello world.';
 }

}

Note that the controller must reside in the Controller sub namespace of your
package in order to be detected by the default routing configuration. In the example
above, Acme\Demo corresponds with the package key Acme.Demo.

By convention, indexAction is the action being called if no specific action was
requested. An action method name must be camelCased and always end with the suffix
“Action”. In the Action Request and other parts of the routing system, it is
referred to simply by its action name, in this case index.

If an action returns a string or an object which can be cast to a string, it will
be set as the content of the response automatically.

Defining Arguments

The unified arguments sent through the HTTP request (that includes query parameters
from the URI, possible POST arguments and uploaded files) are pre-processed and
mapped to method arguments of an action. That means: all arguments a action needs
in order to work should be declared as method parameters of the action method and
not be retrieved from one of the superglobals ($_GET, $_POST, …) or the HTTP request.

Declaring arguments in an action controller is very simple:

/**
 * Says hello to someone.
 *
 * @param string $name Name of the someone
 * @param boolean $formal If the message should be formal (or casual)
 * @return string
 */
public function sayHelloAction($name, $formal = TRUE) {
 $message = ($formal ? 'Greetings, Mr. ' : 'Hello, ') . $name;
 return $message
}

The first argument $name is mandatory. The @param annotation gives Flow
a hint of the expected type, in this case a string.

The second argument $boolean is optional because a default value has been
defined. The @param annotation declares this argument to be a boolean, so you
can expect that $formal will be, in any case, either TRUE or FALSE.

A simple way to pass an argument to the action is through the query parameters in
a URL:

http://localhost/acme.demo/helloworld/sayhello.html?name=Robert&formal=0

Note

Please note that the documentation block of the action method is mandatory – the
annotations (tags) you see in the example are important for Flow to recognize
the correct type of each argument.

Additionally to passing the arguments to the action method, all registered arguments
are also available through $this->arguments.

Argument Mapping

Internally the Action Controller uses the Property Mapper for mapping the raw
arguments of the HTTP request to an Mvc\Controller\Arguments object. The
Property Mapper can convert and validate properties while mapping them, which allows
for example to transparently map values of a submitted form to a new or existing
model instance. It also makes sure that validation rules are considered and that
only certain parts of a nested object structure can be modified through user input.

In order to understand the mapping process, we recommend that you take a look at
the respective chapter about Property Mapping.

Here are some more examples illustrating the mapping process of submitted arguments
to the method arguments of an action:

Besides simple types, also special object types, like DateTime are supported:

http://localhost/acme.demo/foo/bar.html?date=2012-08-10T14:51:01+02:00

/**
 * @param \DateTime $date Some date
 * @return string
 */
public function barAction(\DateTime $date) {
 # …
}

Properties of domain models (or any other objects) can be set through an array-like
syntax. The property mapper creates a new object by default:

http://localhost/acme.demo/foo/create.html?customer[name]=Robert

/**
 * @param Acme\Demo\Domain\Model\Customer $customer A new customer
 * @return string
 */
public function createAction(\Acme\Demo\Domain\Model\Customer $customer) {
 return 'Hello, new customer: ' . $customer->getName();
}

If an identity was specified, the Property Mapper will try to retrieve an object of
that type:

http://localhost/acme.demo/foo/create.html?customer[number]=42&customer[name]=Robert

/**
 * @param Acme\Demo\Domain\Model\Customer $customer An existing customer
 * @param string $name The name to set
 * @return string
 */
public function updateAction(\Acme\Demo\Domain\Model\Customer $customer, $name) {
 $customer->setName($name);
 $this->customerRepository->update($customer);
}

Note

number must be declared as (part of) the identity of a Customer object
through an @Identity annotation. You’ll find more information about
identities and also about the creation and update of objects in the
Persistence chapter.

Instead of passing the arguments through the query string, like in the previous
examples, they can also be submitted as POST or PUT arguments in the body of a
request or even be a mixture of both, query parameters and parameters contained
in the HTTP body. Argument values are merged in the following order, while the
later sources replace earlier ones

	query string (derived from $_GET)

	body (typically from POST or PUT requests)

	file uploads (derived from $_FILES)

Internal Arguments

In some situations Flow needs to set special arguments in order to simplify
handling of objects, widgets or other complex operations. In order to avoid
name clashes with arguments declared by a package author, a special prefix
consisting of two underscores __ is used. Two examples of internal arguments
are the automatically generated HMAC and CSRF hashes 1 which are sent along
with the form data:

<form enctype="multipart/form-data" name="newPost" method="post"
 action="posts/create">
 <input type="hidden" name="__trustedProperties" value="a:3:{s:4:"blog";…
 <input type="hidden" name="__csrfToken" value="__csrfToken=cca240aa13af5bdacea3…
 <label for="author">Author</label>

 <input id="author" type="text" name="newPost[author]" value="First Last" />

 …

Although internal arguments can be retrieved through a method provided by the
ActionRequest object, they are, as the name suggests, only for internal use.
You should not use or rely on these arguments in your own applications.

Plugin Arguments

Besides internal arguments, Flow stores arguments being used by recursive controller
invocations, like plugins, in a separate namespace, the so called pluginArguments.

They are prefixed with two dashes -- and normally, you do not interact with them.

initialize*()

The Action Controller’s processRequest() method initializes important parts of
the controller, maps and validates arguments and finally calls the requested action
method. In order to execute code before the action method is called, it is possible
to implement one or more initialization methods. The following methods are currently
supported:

	initializeAction()

	initialize[ActionName]()

	initializeView()

The first method executed after the base initialization is initializeAction().
The Action Controller only provides an empty method which can be overriden by a
concrete Action Controller. The information about action method arguments and
the corresponding validators has already been collected at this point, but any
arguments sent through the request have not yet been mapped or validated. Therefore,
initializeAction() can still modify the list of possible arguments or add /
remove certain validators by altering $this->arguments.

Right after the generic initializeAction() method has been called, the
Action Controller checks if a more specific initialization method was implemented.
For example, if the action name is “create” and thus the action method name is
createAction(), the controller would try to call a method
initializeCreateAction(). This allows for execution of code which is targeted
directly to a specific action.

Finally, after arguments have been mapped and the controller is almost ready to
call the action method, it tries to resolve a suitable view and, if it was
successful, runs the initializeView() method. In many applications, the view
implementation will be a Fluid Template View. The initializeView() method can
be used to assign template variables which are needed in any of the existing
actions or conduct other template-specific configuration steps.

Media Type / Format

Any implementation based on AbstractController can support one or more formats
for its response. Depending on the preferences of the client sending the request
and the route which matched the request the controller needs render the response
in a format the client understands.

The supported and requested formats are specified as an IANA Media Type [http://www.iana.org/assignments/media-types/index.html] and is,
by default, text/html. In order to support a different or more than one media
type, the controller needs override the default simply by declaring a class property
like in the following example:

class FooController extends ActionController {

 /**
 * A list of IANA media types which are supported by this controller
 *
 * @var array
 */
 protected $supportedMediaTypes = array('application/json', 'text/html');

 # …
}

The media types listed in $supportedMediaTypes don’t need to be in any
particular order.

The Abstract Controller determines the preferred format through Content Negotiation [http://en.wikipedia.org/wiki/Content_negotiation].
More specifically, Flow will check if any specific format was defined in the route
which matched the request (see chapter Routing). If no particular format was
defined, the Accept header of the HTTP Request is consulted for a weighted list
of preferred media types. This list is then matched with the list of supported media
types and hopefully results in one media type which is set as the format in the
Action Request.

Hint

With “format” we are referring to the typical file extension which corresponds to
a specific media type. For example, the format for text/html is “html” and
the format corresponding to the media type application/json would be “json”.
For a complete list of supported media types and their corresponding formats
please refer to the class Neos\Utility\MediaTypes.

The controller implementation must take care of the actual media type support by
supplying a corresponding view or template.

Fluid Template View

An Action Controller can directly return the rendered content by means of a string
returned by the action method. However, this approach is not very flexible and
ignores the separation of concerns as laid out by the Model View Controller pattern.
Instead of rendering an output itself, a controller delegates this task to a view.

Flow uses the Fluid template engine as the default view for action controllers. By
following a naming convention for directories and template files, developers of a
concrete controller don’t need to configure the view or paths to the respective
templates – they are resolved automatically by converting the combination of
package key, controller name and action name into a Fluid template path.

Given that the package key is Acme.Demo, the controller name is HelloWorld,
the action name is sayHello and the format is html, the following path and
filename would be used for the corresponding Fluid template:

./Packages/…/Acme.Demo/Resources/Private/Templates/HelloWorld/SayHello.html

If a template file matching the current request was found, the Action Controller
initializes a Fluid Template View with the correct path name. This pre-initialized
view is available via $this->view in any Action Controller and can be used for
assigning template variables:

$this->view->assign('products', $this->productRepository->findAll());

If an action does not return a result (that is, the result is NULL), an
Action Controller automatically calls the render() method of the current view.
That means, apart from assigning variables to the template (if any), there is rarely
a need to deal further with a Fluid Template View.

Json View

When used as a web service, controllers may want to return data in a format which
can be easily used by other applications. Especially in a web context JSON has
become an often used format which is very light-weight and easy to parse. Although
it is theoretically possible to render a JSON response through a Fluid Template
View, a specialized view does a much better job in a more convenient way.

The JSON View provided by Flow can be used by declaring it as the default view
in the concrete Action Controller implementation:

class FooController extends ActionController {

 /**
 * @var string
 */
 protected $defaultViewObjectName = \Neos\Flow\Mvc\View\JsonView::class;

 # …
}

Alternatively, if more than only the JSON format should be supported, the format
to view mapping feature can be used:

class FooController extends ActionController {

 /**
 * @var string
 */
 protected $viewFormatToObjectNameMap = array(
 'html' => \Neos\FluidAdaptor\View\TemplateView::class,
 'json' => \Neos\Flow\Mvc\View\JsonView::class
);

 /**
 * A list of IANA media types which are supported by this controller
 *
 * @var array
 */
 protected $supportedMediaTypes = array('application/json', 'text/html');

 # …
}

In either case, the JSON View is now invoked if a request is sent which prefers
the media type application/json. In order to return something useful, the data
which should be rendered as JSON must be set through the assign() method. By
default JSON View uses the variable named “value”:

/**
 * @param \Acme\Demo\Model\Product $product
 * @return void
 */
public function showAction(Product $product) {
 $this->view->assign('value', $product);
}

To change the name of the rendered variables, use the setVariablesToRender()
method on the view.

If the controller is configured to use the JSON View, this action may return JSON
code like the following:

{"name":"Arabica","weight":1000,"price":23.95}

Furthermore, the JSON view can be configured to determine which variables of the object
should be included in the output. For that, a configuration array needs to be provided
with setConfiguration():

/**
 * @param \Acme\Demo\Model\Product $product
 * @return void
 */
public function showAction(Product $product) {
 $this->view->assign('value', $product);
 $this->view->setConfiguration(/* configuration follows here */);
}

The configuration is an array which is structured like in the following example:

array(
 'value' => array(

 // only render the "name" property of value
 '_only' => array('name')
),
 'anothervalue' => array(

 // render every property except the "password"
 // property of anothervalue
 '_exclude' => array('password')

 // we also want to include the sub-object
 // "address" as nested JSON object
 '_descend' => array(
 'address' => array(
 // here, you can again configure
 // _only, _exclude and _descend if needed
)
)
),
 'arrayvalue' => array(

 // descend into all array elements
 '_descendAll' => array(
 // here, you can again configure _only,
 // _exclude and _descend for each element
)
),
 'valueWithObjectIdentifier' => array(

 // by default, the object identifier is not
 // included in the output, but you can enable it
 '_exposeObjectIdentifier' => TRUE,

 // the object identifier should not be rendered
 // as "__identity", but as "guid"
 '_exposedObjectIdentifierKey' => 'guid'
)
)

To sum it up, the JSON view has the following configuration options to control
the output structure:

	_only (array): Only include the specified property names in the output

	_exclude (array): Include all except the specified property names in
the output

	_descend (associative array): Descend into the specified sub-objects

	_descendAll (array): Descend into all array elements and generate a
numeric array

	_exposeObjectIdentifier (boolean): if TRUE, the object identifier is
displayed inside __identifier

	_exposeObjectIdentifierKey (string): the JSON field name inside which
the object identifier should be displayed

Custom View

Similar to the Fluid Template View and the JSON View, packages can provide their
own custom views. The only requirement for such a view is the implementation of
all methods defined in the Neos\Flow\Mvc\View\ViewInterface.

An Action Controller can be configured to use a custom view through the
$defaultViewObjectName and $viewFormatToObjectNameMap properties, as
explained in the section about JSON View.

Configuring Views through Views.yaml

If you want to change Templates, Partials, Layouts or the whole ViewClass for
a foreign package without modifying it directly, and thus breaking updatability,
you can create a Views.yaml in your configuration folder and override all options
the view supports.

The general syntax of a view configuration looks like this:

-
 requestFilter: 'isPackage("Foreign.Package") && isController("Standard")'
 viewObjectName: 'Neos\Fusion\View\FusionView'
 options:
 fusionPathPatterns:
 - 'resource://Neos.Fusion/Private/Fusion'
 - 'resource://My.Package/Private/Fusion'
 fusionPath: 'yourProtoype'

The requestFilter is based on Neos.Eel allowing you to match arbitrary requests
so that you can override View configuration for various scenarios.
You can combine any of these matchers to filter as specific as you need:

	isPackage(“Package.Key”)

	isSubPackage(“SubPackage”)

	isController(“Standard”)

	isAction(“index”)

	isFormat(“html”)

There are additional helpers to get the parentRequest or mainRequest of the current request,
which you can use to limit some configuration to only take effect inside a specific subRequest.
All Eel matchers above can be used with the parentRequest or mainRequest as well:

	parentRequest.isPackage(“Neos.Neos”)

	parentRequest.isController(“Standard”)

	mainRequest.isController(“Standard”)

	…

You can combine any of these matchers with boolean operators:

(isPackage(“My.Foo”) || isPackage(‘My.Bar’)) && isFormat(“html”)

The order of the configurations is in most cases unimportant. Each matcher has a
specific weight similar to CSS specifity (ID, class, inline, important) to determine
which configuration outweighs the other. For each match resulting matcher the weight
will be increased by a certain value.

	Method

	Weight

	isPackage(“Package.Key”)

	1

	isSubPackage(“SubPackage”)

	10

	isController(“Standard”)

	100

	isAction(“index”)

	1000

	isFormat(“html”)

	10000

	mainRequest()

	100000

	parentRequest()

	1000000

If the package is “My.Foo” and the Format is “html” the result will be 10001

Note

Previously the configuration of all matching Views.yaml filters was merged.
From version 4.0 on only the matching filter with the highest weight is respected
in order to reduce ambiguity.

The fusionPathPatterns has to contain the Root-Fusion and the path to Fusion-Folder which contains your Prototype. Your Prototype gets searched recursively by fusionPath.

Controller Context

The Controller Context is an object which encapsulates all the controller-related
objects and makes them accessible to the view. Thus, the $this->request property
of the controller is available inside the view as
$this->controllerContext->getRequest().

Validation

Arguments which were sent along with the HTTP request are usually sanitized and
valdidated before they are passed to an action method of a controller. Behind the
scenes, the Property Mapper is used for mapping and
validating the raw input. During this process, the validators are invoked:

	base validation as defined in the model to be validated (if any)

	argument validation as defined in the controller or action

The chapter about Validation outlines the general validation mechanism and
how declare and configure base validation. While the rules declared in a model
describe the minimum requirements for a valid entity, the rules declared in a
controller define additional preconditions before arguments may be passed to an
action method.

Per-action validation rules are declared through the Validate annotation. As
an example, an email address maybe optional in a Customer model, but it may be
required when a customer entity is passed to a signUpAction() method:

/**
 * @param \Acme\Demo\Domain\Model\Customer $customer
 * @Flow\Validate(argumentName="emailAddress", type="EmailAddress")
 */
public function signUpAction(Customer $customer) {
 # …
}

While Validate defines additional rules, the IgnoreValidation annotation
does the opposite: any base validation rules declared for the specified argument
will be ignored:

/**
 * @param \Acme\Demo\Domain\Model\Customer $customer
 * @Flow\IgnoreValidation("$customer")
 */
public function signUpAction(Customer $customer) {
 # …
}

By default the validation for an argument annotated with IgnoreValidation
will not be executed. If the result is needed for further processing in the
action method, the evaluate flag can be enabled:

/**
 * @param \Acme\Demo\Domain\Model\Customer $customer
 * @Flow\IgnoreValidation("$customer", evaluate=true)
 */
public function signUpAction(Customer $customer) {
 if ($this->arguments['customer']->getValidationResults()->hasErrors()) {
 # …
 }
}

The next section explains how to get a hold of the validation results and react
on warnings or errors which occurred during the mapping and validation step.

Error Handling

The argument mapping step based on the validation rules mentioned earlier makes
sure that an action method is only called if its arguments are valid. In the reverse
it means that the action specified by the request will not be called if a mapping
or validation error occurred. In order to deal with these errors and provide a
meaningful error message to the user, a special action is called instead of the
originally intended action.

The default implementation of the errorAction() method will redirect the browser
to the URI it came from, for example to redisplay the originally submitted form.

Any errors or warnings which occurred during the argument mapping process are stored
in a special object, the mapping results. These mapping results can be
conveniently access through a Fluid view helper in order to display warnings and
errors along the submitted form or on top of it:

<f:validation.results>
 <f:if condition="{validationResults.flattenedErrors}">
 <ul class="errors">
 <f:for each="{validationResults.flattenedErrors}" as="errors" key="propertyPath">
 {propertyPath}

 <f:for each="{errors}" as="error">
 {error.code}: {error}
 </f:for>

 </f:for>

 </f:if>
</f:validation.results>

Besides using the view helper to display the validation results, you can also
completely replace the errorAction() method with your own custom method.

Upload Handling

The handling of file uploads is pretty straight forward. Files are handled
internally as PersistentResource objects and thus, storing an uploaded file is just a
matter of declaring a property of type PersistentResource in the respective model.

There is a full example explaining file uploads in the
chapter about resource management.

REST Controller

tbd.

Generating Links

Links to other controller and their actions should not be rendered manually because
hardcoded or manually rendered links circumvent many of Flow’s features.

For generating links to other controllers, the UriBuilder which is available
as $this->uriBuilder can be used. However, in most cases, the user does not
directly interact with this one, but rather uses forward(), redirect()
in the Controller and <f:link.action /> / <f:uri.action /> inside Fluid
templates.

forward() and redirect()

Often, controllers need to defer execution to other controllers or actions. For
that to happen, Flow supports both, internal and external redirects:

	in an internal redirect which is triggered by forward(), the URI does not
change.

	in an external redirect, the browser receives a HTTP Location header, redirecting
him to the new controller. Thus, the URI changes.

As a consequence, forward() can also call controllers or actions which are
not exposed through the routing mechanism, while redirect() only works with
publicly callable controllers.

This example demonstrates the usage of redirect():

public function createAction(Product $product) {
 // TODO: store the product somewhere

 $this->redirect('show', NULL, NULL, array('product' => $product));

 // This line is never executed, as redirect() and
 // forward() immediately stop execution of this method.
}

It is good practice to have different actions for modifying and showing data.
Often, redirects are used to link between them. As an example, an updateAction()
which updates an object should then redirect() to the show action of the
controller, then displays the updated object.

forward() supports the following arguments:

	$actionName (required): Name of the target action

	$controllerName: Name of the target controller. If not specified, the current
controller is used.

	$packageKey: Name of the package, optionally with sub-package. If not specified,
the current package key / subpackage key is specified. The package and sub-package
need to be delimited by \, so Foo.Bar\Test will set the package to Foo.Bar
and the subpackage to Test.

	$arguments: array of request arguments. Objects are automatically converted to their
identity.

redirect() supports all of the above arguments, additionally with the following ones:

	$delay: Delay in seconds before redirecting

	$statusCode: the status code to be used for redirecting. By default, 303 is used.

	$format: The target format for the redirect. If not set, the current format is used.

Flash Messages

In many applications users need to be notified about the application flow, telling
him for example that an object has been successfully saved or deleted. Such messages,
which should be displayed to the user only once, are called Flash Messages.

A Flash Message can be added inside the controller by using the addFlashMessage method,
which expects the following arguments:

	$messageBody (required): The message which should be shown

	$messageTitle: The title of the message

	$severity: The severity of the message; by default “OK” is used. Needs to be one
of NeosErrorMessagesMessage::SEVERITY_* constants (OK, NOTICE, WARNING, ERROR)

	$messageArguments (array): If the message contains any placeholders, these can be
filled here. See the PHP function printf for details on the placeholder format.

	$messageCode (integer): unique code of this message, can be used f.e. for localization.
By convention, if you set this, it should be the UNIX timestamp at time of writing the
source code to be roughly unique.

Creating a Flash Messages is a matter of a single line of code:

$this->addFlashMessage('Everything is all right.');
$this->addFlashMessage('Sorry, I messed it all up!', 'My Fault', \Neos\Error\Messages\Message::SEVERITY_ERROR);

The flash messages can be rendered inside the template using the <f:flashMessages />
ViewHelper. Please consult the ViewHelper for a full reference.

	1

	The HMAC and CSRF hashes improve security for form submissions and actions
on restricted resources. Please refer to the Security chapter for more
details.

Templating

Templating is done in Fluid, which is a next-generation templating engine. It
has several goals in mind:

	Simplicity

	Flexibility

	Extensibility

	Ease of use

This templating engine should not be bloated, instead, we try to do it “The Zen
Way” - you do not need to learn too many things, thus you can concentrate on getting
your things done, while the template engine handles everything you do not want to
care about.

What Does it Do?

In many MVC systems, the view currently does not have a lot of functionality. The
standard view usually provides a render method, and nothing more. That makes it
cumbersome to write powerful views, as most designers will not write PHP code.

That is where the Template Engine comes into play: It “lives” inside the View, and
is controlled by a special TemplateView which instantiates the Template Parser,
resolves the template HTML file, and renders the template afterwards.

Below, you’ll find a snippet of a real-world template displaying a list of blog
postings. Use it to check whether you find the template language intuitive:

{namespace f=Neos\FluidAdaptor\ViewHelpers}
<html>
<head><title>Blog</title></head>
<body>
<h1>Blog Postings</h1>
<f:for each="{postings}" as="posting">
 <h2>{posting.title}</h2>
 <div class="author">{posting.author.name} {posting.author.email}</div>
 <p>
 <f:link.action action="details" arguments="{id : posting.id}">
 {posting.teaser}
 </f:link.action>
 </p>
</f:for>
</body>
</html>

	The Namespace Import makes the \Neos\FluidAdaptor\ViewHelper namespace available
under the shorthand f.

	The <f:for> essentially corresponds to foreach ($postings as $posting) in PHP.

	With the dot-notation ({posting.title} or {posting.author.name}), you
can traverse objects. In the latter example, the system calls $posting->getAuthor()->getName().

	The <f:link.action /> tag is a so-called ViewHelper. It calls arbitrary PHP
code, and in this case renders a link to the “details”-Action.

There is a lot more to show, including:

	Layouts

	Custom View Helpers

	Boolean expression syntax

We invite you to explore Fluid some more, and please do not hesitate to give feedback!

Basic Concepts

This section describes all basic concepts available. This includes:

	Namespaces

	Variables / Object Accessors

	View Helpers

	Arrays

Namespaces

Fluid can be extended easily, thus it needs a way to tell where a certain tag
is defined. This is done using namespaces, closely following the well-known
XML behavior.

Namespaces can be defined in a template in two ways:

	{namespace f=NeosFluidAdaptorViewHelpers}

	This is a non-standard way only understood by Fluid. It links the f
prefix to the PHP namespace \Neos\FluidAdaptor\ViewHelpers.

	<html xmlns:foo=”http://some/unique/namespace”>

	The standard for declaring a namespace in XML. This will link the foo
prefix to the URI http://some/unique/namespace and Fluid can look up
the corresponding PHP namespace in your settings (so this is a two-piece
configuration). This makes it possible for your XML editor to validate the
template files and even use an XSD schema for auto completion.

A namespace linking f to \Neos\FluidAdaptor\ViewHelpers is imported by
default. All other namespaces need to be imported explicitly.

If using the XML namespace syntax the default pattern
http://typo3.org/ns/<php namespace> is resolved automatically by the
Fluid parser. If you use a custom XML namespace URI you need to configure the
URI to PHP namespace mapping. The YAML syntax for that is:

Neos:
 Fluid:
 namespaces:
 'http://some/unique/namespace': 'My\Php\Namespace'

Variables and Object Accessors

A templating system would be quite pointless if it was not possible to display some
external data in the templates. That’s what variables are for.

Suppose you want to output the title of your blog, you could write the following
snippet into your controller:

$this->view->assign('blogTitle', $blog->getTitle());

Then, you could output the blog title in your template with the following snippet:

<h1>This blog is called {blogTitle}</h1>

Now, you might want to extend the output by the blog author as well. To do this,
you could repeat the above steps, but that would be quite inconvenient and hard to read.

Note

The semantics between the controller and the view should be the following:
The controller instructs the view to “render the blog object given to it”,
and not to “render the Blog title, and the blog posting 1, …”.

Passing objects to the view instead of simple values is highly encouraged!

That is why the template language has a special syntax for object access. A nicer
way of expressing the above is the following:

// This should go into the controller:
$this->view->assign('blog', $blog);

<!-- This should go into the template: -->
<h1>This blog is called {blog.title}, written by {blog.author}</h1>

Instead of passing strings to the template, we are passing whole objects around
now - which is much nicer to use both from the controller and the view side. To
access certain properties of these objects, you can use Object Accessors. By writing
{blog.title}, the template engine will call a getTitle() method on the blog
object, if it exists. By writing {blog.isPublic} or {blog.hasPosts}, the
template engine will call isPublic() or hasPosts() respectively, unless
getIsPublic() or getHasPosts() methods exist.
Besides, you can use that syntax to traverse associative arrays and public properties.

Tip

Deep nesting is supported: If you want to output the email address of the blog
author, then you can use {blog.author.email}, which is roughly equivalent
to $blog->getAuthor()->getEmail().

View Helpers

All output logic is placed in View Helpers.

The view helpers are invoked by using XML tags in the template, and are implemented
as PHP classes (more on that later).

This concept is best understood with an example:

{namespace f=Neos\FluidAdaptor\ViewHelpers}
<f:link.action controller="Administration">Administration</f:link.action>

The example consists of two parts:

	Namespace Declaration as explained earlier.

	Calling the View Helper with the <f:link.action...> ... </f:link.action>
tag renders a link.

Now, the main difference between Fluid and other templating engines is how the
view helpers are implemented: For each view helper, there exists a corresponding
PHP class. Let’s see how this works for the example above:

The <f:link.action /> tag is implemented in the class \Neos\FluidAdaptor\ViewHelpers\Link\ActionViewHelper.

Note

The class name of such a view helper is constructed for a given tag as follows:

	The first part of the class name is the namespace which was imported (the namespace
prefix f was expanded to its full namespace Neos\FluidAdaptor\ViewHelpers)

	The unqualified name of the tag, without the prefix, is capitalized (Link),
and the postfix ViewHelper is appended.

The tag and view helper concept is the core concept of Fluid. All output logic is
implemented through such ViewHelpers / tags! Things like if/else, for, … are
all implemented using custom tags - a main difference to other templating languages.

Note

Some benefits of the class-based approach approach are:

	You cannot override already existing view helpers by accident.

	It is very easy to write custom view helpers, which live next to the standard view helpers

	All user documentation for a view helper can be automatically generated from the
annotations and code documentation.

Most view helpers have some parameters. These can be plain strings, just like in
<f:link.action controller="Administration">...</f:link.action>, but as well
arbitrary objects. Parameters of view helpers will just be parsed with the same rules
as the rest of the template, thus you can pass arrays or objects as parameters.

This is often used when adding arguments to links:

<f:link.action controller="Blog" action="show" arguments="{singleBlog: blogObject}">
 ... read more
</f:link.action>

Here, the view helper will get a parameter called arguments which is of type array.

Warning

Make sure you do not put a space before or after the opening or closing
brackets of an array. If you type arguments=" {singleBlog : blogObject}"
(notice the space before the opening curly bracket), the array is automatically
casted to a string (as a string concatenation takes place).

This also applies when using object accessors: <f:do.something with="{object}" />
and <f:do.something with=" {object}" /> are substantially different: In
the first case, the view helper will receive an object as argument, while in
the second case, it will receive a string as argument.

This might first seem like a bug, but actually it is just consistent that it
works that way.

Boolean Expressions

Often, you need some kind of conditions inside your template. For them, you will
usually use the <f:if> ViewHelper. Now let’s imagine we have a list of blog
postings and want to display some additional information for the currently selected
blog posting. We assume that the currently selected blog is available in {currentBlogPosting}.
Now, let’s have a look how this works:

<f:for each="{blogPosts}" as="post">
 <f:if condition="{post} == {currentBlogPosting}">... some special output here ...</f:if>
</f:for>

In the above example, there is a bit of new syntax involved: {post} == {currentBlogPosting}.
Intuitively, this says “if the post I’‘m currently iterating over is the same as
currentBlogPosting, do something.”

Why can we use this boolean expression syntax? Well, because the IfViewHelper
has registered the argument condition as boolean. Thus, the boolean expression
syntax is available in all arguments of ViewHelpers which are of type boolean.

All boolean expressions have the form X <comparator> Y, where:

	<comparator> is one of the following: ==, >, >=, <, <=, % (modulo)

	X and Y are one of the following:

	a number (integer or float)

	a string (in single or double quotes)

	a JSON array

	a ViewHelper

	an Object Accessor (this is probably the most used example)

	inline notation for ViewHelpers

Inline Notation for ViewHelpers

In many cases, the tag-based syntax of ViewHelpers is really intuitive, especially
when building loops, or forms. However, in other cases, using the tag-based syntax
feels a bit awkward – this can be demonstrated best with the <f:uri.resource>-
ViewHelper, which is used to reference static files inside the Public/ folder of
a package. That’s why it is often used inside <style> or <script>-tags,
leading to the following code:

<link rel="stylesheet" href="<f:uri.resource path='myCssFile.css' />" />

You will notice that this is really difficult to read, as two tags are nested into
each other. That’s where the inline notation comes into play: It allows the usage
of {f:uri.resource()} instead of <f:uri.resource />. The above example can
be written like the following:

<link rel="stylesheet" href="{f:uri.resource(path:'myCssFile.css')}" />

This is readable much better, and explains the intent of the ViewHelper in a much
better way: It is used like a helper function.

The syntax is still more flexible: In real-world templates, you will often find
code like the following, formatting a DateTime object (stored in {post.date}
in the example below):

<f:format.date format="d-m-Y">{post.date}</f:format.date>

This can also be re-written using the inline notation:

{post.date -> f:format.date(format:'d-m-Y')}

This is also a lot better readable than the above syntax.

Tip

This can also be chained indefinitely often, so one can write:

{post.date -> foo:myHelper() -> bar:bla()}

Sometimes you’ll still need to further nest ViewHelpers, that is when the design
of the ViewHelper does not allow that chaining or provides further arguments. Have
in mind that each argument itself is evaluated as Fluid code, so the following
constructs are also possible:

{foo: bar, baz: '{planet.manufacturer -> f:someother.helper(test: \'stuff\')}'}
{some: '{f:format.stuff(arg: \'foo'\)}'}

To wrap it up: Internally, both syntax variants are handled equally, and every
ViewHelper can be called in both ways. However, if the ViewHelper “feels” like a
tag, use the tag-based notation, if it “feels” like a helper function, use the
Inline Notation.

Arrays

Some view helpers, like the SelectViewHelper (which renders an HTML select
dropdown box), need to get associative arrays as arguments (mapping from internal
to displayed name). See the following example for how this works:

<f:form.select options="{edit: 'Edit item', delete: 'Delete item'}" />

The array syntax used here is very similar to the JSON object syntax. Thus, the
left side of the associative array is used as key without any parsing, and the
right side can be either:

	a number:

{a : 1,
 b : 2
}

	a string; Needs to be in either single- or double quotes. In a double-quoted
string, you need to escape the " with a \ in front (and vice versa for single
quoted strings). A string is again handled as Fluid Syntax, this is what you
see in example c:

{a : 'Hallo',
 b : "Second string with escaped \" (double quotes) but not escaped ' (single quotes)"
 c : "{firstName} {lastName}"
}

	a boolean, best represented with their integer equivalents:

{a : 'foo',
 notifySomebody: 1
 useLogging: 0
}

	a nested array:

{a : {
 a1 : "bla1",
 a2 : "bla2"
 },
 b : "hallo"
}

	a variable reference (=an object accessor):

{blogTitle : blog.title,
 blogObject: blog
}

Note

All these array examples will result into an associative array. If you have to supply
a non-associative, i.e. numerically-indexed array, you’ll write {0: 'foo', 1: 'bar', 2: 'baz'}.

Passing Data to the View

You can pass arbitrary objects to the view, using $this->view->assign($identifier, $object)
from within the controller. See the above paragraphs about Object Accessors for details
how to use the passed data.

Layouts

In almost all web applications, there are many similarities between each page.
Usually, there are common templates or menu structures which will not change for
many pages.

To make this possible in Fluid, we created a layout system, which we will
introduce in this section.

Writing a Layout

Every layout is placed in the Resources/Private/Layouts directory, and has the
file ending of the current format (by default .html). A layout is a normal Fluid
template file, except there are some parts where the actual content of the target
page should be inserted:

<html>
<head><title>My fancy web application</title></head>
<body>
<div id="menu">... menu goes here ...</div>
<div id="content">
 <f:render section="content" />
</div>
</body>
</html>

With this tag, a section from the target template is rendered.

Using a Layout

Using a layout involves two steps:

	Declare which layout to use: <f:layout name="..." /> can be written anywhere
on the page (though we suggest to write it on top, right after the namespace
declaration) - the given name references the layout.

	Provide the content for all sections used by the layout using the <f:section>...</f:section>
tag: <f:section name="content">...</f:section>

For the above layout, a minimal template would look like the following:

<f:layout name="example.html" />

<f:section name="content">
 This HTML here will be outputted to inside the layout
</f:section>

Writing Your Own ViewHelper

As we have seen before, all output logic resides in View Helpers. This includes
the standard control flow operators such as if/else, HTML forms, and much more.
This is the concept which makes Fluid extremely versatile and extensible.

If you want to create a view helper which you can call from your template (as a
tag), you just write a plain PHP class which needs to inherit from
Neos\FluidAdaptor\Core\AbstractViewHelper (or its subclasses). You need to implement
only one method to write a view helper:

public function render()

Rendering the View Helper

We refresh what we have learned so far: When a user writes something like
<blog:displayNews /> inside a template (and has imported the blog namespace
to Neos\Blog\ViewHelpers), Fluid will automatically instantiate the class
Neos\Blog\ViewHelpers\DisplayNewsViewHelper, and invoke the render() method on it.

This render() method should return the rendered content as string.

You have the following possibilities to access the environment when rendering your view helper:

	$this->arguments is an associative array where you will find the values for
all arguments you registered previously.

	$this->renderChildren() renders everything between the opening and closing
tag of the view helper and returns the rendered result (as string).

	$this->templateVariableContainer is an instance of Neos\FluidAdaptor\Core\ViewHelper\TemplateVariableContainer,
with which you have access to all variables currently available in the template,
and can modify the variables currently available in the template.

Note

If you add variables to the TemplateVariableContainer, make sure to remove
every variable which you added again. This is a security measure against side-effects.

It is also not possible to add a variable to the TemplateVariableContainer if
a variable of the same name already exists - again to prevent side effects and
scope problems.

Implementing a for ViewHelper

Now, we will look at an example: How to write a view helper giving us the foreach
functionality of PHP.

A loop could be called within the template in the following way:

<f:for each="{blogPosts}" as="blogPost">
 <h2>{blogPost.title}</h2>
</f:for>

So, in words, what should the loop do?

It needs two arguments:

	each: Will be set to some object or array which can be iterated over.

	as: The name of a variable which will contain the current element being iterated over

It then should do the following (in pseudo code):

foreach ($each as $$as) {
 // render everything between opening and closing tag
}

Implementing this is fairly straightforward, as you will see right now:

class ForViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractViewHelper {

 /**
 * Renders a loop
 *
 * @param array $each Array to iterate over
 * @param string $as Iteration variable
 */
 public function render(array $each, $as) {
 $out = '';
 foreach ($each as $singleElement) {
 $this->variableContainer->add($as, $singleElement);
 $out .= $this->renderChildren();
 $this->variableContainer->remove($as);
 }
 return $out;
 }

}

	The PHPDoc is part of the code! Fluid extracts the argument data types from the PHPDoc.

	You can simply register arguments to the view helper by adding them as method
arguments of the render() method.

	Using $this->renderChildren(), everything between the opening and closing
tag of the view helper is rendered and returned as string.

Declaring Arguments

We have now seen that we can add arguments just by adding them as method arguments
to the render() method. There is, however, a second method to register arguments.

You can also register arguments inside a method called initializeArguments().
Call $this->registerArgument($name, $dataType, $description, $isRequired, $defaultValue=NULL) inside.

It depends how many arguments a view helper has. Sometimes, registering them as
render() arguments is more beneficial, and sometimes it makes more sense to
register them in initializeArguments().

AbstractTagBasedViewHelper

Many view helpers output an HTML tag - for example <f:link.action ...> outputs
a tag. There are many ViewHelpers which work that way.

Very often, you want to add a CSS class or a target attribute to an
tag. This often leads to repetitive code like below. (Don’t look at the code too
thoroughly, it should just demonstrate the boring and repetitive task one would
have without the AbstractTagBasedViewHelper):

class ActionViewHelper extends \Neos\FluidAdaptor\Core\AbstractViewHelper {

 public function initializeArguments() {
 $this->registerArgument('class', 'string', 'CSS class to add to the link');
 $this->registerArgument('target', 'string', 'Target for the link');
 ... and more ...
 }

 public function render() {
 $output = '<a href="..."';
 if ($this->arguments['class']) {
 $output .= ' class="' . $this->arguments['class'] . '"';
 }
 if ($this->arguments['target']) {
 $output .= ' target="' . $this->arguments['target'] . '"';
 }
 $output .= '>';
 ... and more ...
 return $output;
 }

}

Now, the AbstractTagBasedViewHelper introduces two more methods you can use
inside initializeArguments():

	registerTagAttribute($name, $type, $description, $required): Use this method
to register an attribute which should be directly added to the tag.

	registerUniversalTagAttributes(): If called, registers the standard HTML
attributes class, id, dir, lang, style, title.

Inside the AbstractTagBasedViewHelper, there is a TagBuilder available
(with $this->tag) which makes building a tag a lot more straightforward.

With the above methods, the Link\ActionViewHelper from above can be condensed as follows:

class ActionViewHelper extends \Neos\FluidAdaptor\Core\AbstractViewHelper {

 public function initializeArguments() {
 $this->registerUniversalTagAttributes();
 }

 /**
 * Render the link.
 *
 * @param string $action Target action
 * @param array $arguments Arguments
 * @param string $controller Target controller. If NULL current controllerName is used
 * @param string $package Target package. if NULL current package is used
 * @param string $subpackage Target subpackage. if NULL current subpackage is used
 * @param string $section The anchor to be added to the URI
 * @return string The rendered link
 */
 public function render($action = NULL, array $arguments = array(),
 $controller = NULL, $package = NULL, $subpackage = NULL,
 $section = '') {
 $uriBuilder = $this->controllerContext->getURIBuilder();
 $uri = $uriBuilder->uriFor($action, $arguments, $controller, $package, $subpackage, $section);
 $this->tag->addAttribute('href', $uri);
 $this->tag->setContent($this->renderChildren());

 return $this->tag->render();
 }

}

Additionally, we now already have support for all universal HTML attributes.

Tip

The TagBuilder also makes sure that all attributes are escaped properly,
so to decrease the risk of Cross-Site Scripting attacks, make sure to use it
when building tags.

additionalAttributes

Sometimes, you need some HTML attributes which are not part of the standard.
As an example: If you use the Dojo JavaScript framework, using these non-standard
attributes makes life a lot easier.

We think that the templating framework should not constrain the user in his
possibilities – thus, it should be possible to add custom HTML attributes as well,
if they are needed. Our solution looks as follows:

Every view helper which inherits from AbstractTagBasedViewHelper has a special
argument called additionalAttributes which allows you to add arbitrary HTML
attributes to the tag.

If the link tag from above needed a new attribute called fadeDuration, which
is not part of HTML, you could do that as follows:

<f:link.action additionalAttributes="{fadeDuration : 800}">
 Link with fadeDuration set
</f:link.action>

This attribute is available in all tags that inherit from Neos\FluidAdaptor\Core\ViewHelper\AbstractTagBasedViewHelper.

AbstractConditionViewHelper

To create a custom condition ViewHelper, you need to subclass the AbstractConditionViewHelper class, and implement your own static evaluateCondition() method that should return a boolean.
The given RenderingContext can provide you with an object manager to get anything you might need to evaluate the condition together with the given arguments.

Depending on the result of this method either the then or the else part is rendered.

@see NeosFluidAdaptorViewHelpersSecurityIfAccessViewHelper::evaluateCondition for a simple usage example.

Every Condition ViewHelper has a “then” and “else” argument, so it can be used like:
<[aConditionViewHelperName] …. then=”condition true” else=”condition false” />, or as well use the “then” and “else” child nodes.

class IfAccessViewHelper extends \Neos\FluidAdaptor\Core\ViewHelper\AbstractConditionViewHelper {

/**
 * @param null $arguments
 * @param RenderingContextInterface $renderingContext
 * @return boolean
 */
protected static function evaluateCondition($arguments = null, RenderingContextInterface $renderingContext)
{
 $objectManager = $renderingContext->getObjectManager();
 /** @var Context $securityContext */
 $securityContext = $objectManager->get(Context::class);

 if ($securityContext != null && !$securityContext->canBeInitialized()) {
 return false;
 }
 $privilegeManager = static::getPrivilegeManager($renderingContext);
 return $privilegeManager->isPrivilegeTargetGranted($arguments['privilegeTarget'], $arguments['parameters']);
}

By basing your condition ViewHelper on the AbstractConditionViewHelper,
you will get the following features:

	The ViewHelper will have two arguments defined, called then and else,
which are very helpful in the Inline Notation.

	The ViewHelper will automatically work with the <f:then> and <f:else>-Tags.

Widgets

Widgets are special ViewHelpers which encapsulate complex functionality. It can
be best understood what widgets are by giving some examples:

	<f:widget.paginate> renders a paginator, i.e. can be used to display large
amounts of objects. This is best known from search engine result pages.

	<f:widget.autocomplete> adds autocompletion functionality to a text field.

	More widgets could include a Google Maps widget, a sortable grid, …

Internally, widgets consist of an own Controller and View.

Using Widgets

Using widgets inside your templates is really simple: Just use them like standard
ViewHelpers, and consult their documentation for usage examples. An example for
the <f:widget.paginate> follows below:

<f:widget.paginate objects="{blogs}" as="paginatedBlogs" configuration="{itemsPerPage: 10}">
 // use {paginatedBlogs} as you used {blogs} before, most certainly inside
 // a <f:for> loop.
</f:widget.paginate>

In the above example, it looks like {blogs} contains all Blog objects, thus
you might wonder if all objects were fetched from the database. However, the blogs
are not fetched from the database until you actually use them, so the Paginate Widget
will adjust the query sent to the database and receive only the small subset of objects.

So, there is no negative performance overhead in using the Paginate Widget.

Writing widgets

We already mentioned that a widget consists of a controller and a view, all triggered
by a ViewHelper. We’ll now explain these different components one after each other,
explaining the API you have available for creating your own widgets.

ViewHelper

All widgets inherit from Neos\FluidAdaptor\Core\Widget\AbstractWidgetViewHelper.
The ViewHelper of the widget is the main entry point; it controls the widget and
sets necessary configuration for the widget.

To implement your own widget, the following things need to be done:

	The controller of the widget needs to be injected into the $controller property.

	Inside the render()-method, you should call $this->initiateSubRequest(),
which will initiate a request to the controller which is set in the $controller
property, and return the Response object.

	By default, all ViewHelper arguments are stored as Widget Configuration, and
are also available inside the Widget Controller. However, to modify the Widget
Configuration, you can override the getWidgetConfiguration() method and return
the configuration which you need there.

There is also a property $ajaxWidget, which we will explain later in Ajax Widgets.

Controller

A widget contains one controller, which must inherit from Neos\FluidAdaptor\Core\Widget\AbstractWidgetController,
which is an ActionController. There is only one difference between the normal
ActionController and the AbstractWidgetController: There is a property
$widgetConfiguration, containing the widget’s configuration which was set in the ViewHelper.

Fluid Template

The Fluid templates of a widget are normal Fluid templates as you know them, but
have a few ViewHelpers available additionally:

	<f:uri.widget>

	Generates an URI to another action of the widget.

	<f:link.widget>

	Generates a link to another action of the widget.

	<f:renderChildren>

	Can be used to render the child nodes of the Widget ViewHelper,
possibly with some more variables declared.

Ajax Widgets

Widgets have special support for AJAX functionality. We’ll first explain what needs
to be done to create an AJAX compatible widget, and then explain it with an example.

To make a widget AJAX-aware, you need to do the following:

	Set $ajaxWidget to TRUE inside the ViewHelper. This will generate an unique
AJAX Identifier for the Widget, and store the WidgetConfiguration in the user’s
session on the server.

	Inside the index-action of the Widget Controller, generate the JavaScript which
triggers the AJAX functionality. There, you will need a URI which returns the
AJAX response. For that, use the following ViewHelper inside the template:

<f:uri.widget ajax="TRUE" action="..." arguments="..." />

	Inside the template of the AJAX request, <f:renderChildren> is not available,
because the child nodes of the Widget ViewHelper are not accessible there.

XSD schema generation

A XSD schema file for your ViewHelpers can be created by executing

./flow documenation:generatexsd <Your>\\<Package>\\ViewHelpers
 --target-file /some/directory/your.package.xsd

Then import the XSD file in your favorite IDE and map it to the namespace
http://typo3.org/ns/<Your/Package>/ViewHelpers. Add the namespace to your
Fluid template by adding the xmlns attribute to the root tag (usually
<xml …> or <html …>).

Note

You are able to use a different XML namespace pattern by specifying the
-–xsd-namespace argument in the generatexsd command.

If you want to use this inside partials, you can use the “section” argument of
the render ViewHelper in order to only render the content of the partial.

Partial:

<html xmlns:x=”http://typo3.org/ns/Your/Package/ViewHelpers”>
<f:section name=”content”>
 <x:yourViewHelper />
</f:section>

Template:

<f:render partial=”PartialName” section=”content” />

Validation

Validation in web applications is a very crucial topic: Almost all data which is entered by
an end user needs some checking rules, no matter if he enters an e-mail address or a subject
for a forum posting.

While validation itself is quite simple, embedding it into the rest of the framework is not:
If the user has entered a wrong value, the original page has to be re-displayed, and the user
needs some well-readable information on what data he should enter.

This chapter explains:

	how to use the validators being part of Flow

	how to write your own validators

	how to use validation in your own code

	how validation is embedded in the model, the persistence and the MVC layer

Automatic Validation Throughout The Framework

Inside Flow, validation is triggered automatically at two places: When an object is persisted, its
base validators are checked as explained in the last section. Furthermore, validation happens in
the MVC layer when a Domain Model is used as a controller argument, directly after Property Mapping.

Warning

If a validation error occurs during persistence, there is no way to catch this error
and handle it – as persistence is executed at the end of every request after the response
has been sent to the client.

Thus, validation on persistence is merely a safeguard for preventing invalid data to be stored
in the database.

When validation in the MVC layer happens, it is possible to handle errors correctly. In a nutshell,
the process is as follows:

	an array of data is received from the client

	it is transformed to an object using Property Mapping

	this object is validated using the base validators

	if there is a property mapping or validation error, the last page (which usually contains an
edit-form) is re-displayed, an error message is shown and the erroneous field is highlighted.

Tip

If you want to suppress the re-display of the last page (which is handled through
errorAction(), you can add a @Flow\IgnoreValidation("$comment") annotation
to the docblock of the corresponding controller action.

Normally, you build up your Controller with separate actions for displaying a form to edit an entity
and another action to actually create/remove/update the entity. For those actions the validation for
Domain Model arguments is triggered as explained above. So in order for the automatic re-display of the
previous edit form to work, the validation inside that action needs to be suppressed, or else it would
itself possibly fail the validation and try to redirect to previous action, ending up in an infinite loop.

class CommentController extends \Neos\Flow\Mvc\Controller\ActionController
{

 /**
 * @param \YourPackage\Domain\Model\Comment $comment
 * @Flow\IgnoreValidation("$comment")
 */
 public function editAction(\YourPackage\Domain\Model\Comment $comment)
 {
 // here, $comment is not necessarily a valid object
 }

 /**
 * @param \YourPackage\Domain\Model\Comment $comment
 */
 public function updateAction(\YourPackage\Domain\Model\Comment $comment)
 {
 // here, $comment is a valid object
 }
}

Warning

You should always annotate the model arguments of your form displaying actions to ignore
validation, or else you might end up with an infinite loop on failing validation.

Furthermore, it is also possible to execute additional validators only for specific action
arguments using @Flow\Validate inside a controller action:

class CommentController extends \Neos\Flow\Mvc\Controller\ActionController {

 /**
 * @param \YourPackage\Domain\Model\Comment $comment
 * @Flow\Validate(argumentName="comment", type="YourPackage:SomeSpecialValidator")
 */
 public function updateAction(\YourPackage\Domain\Model\Comment $comment)
 {
 // here, $comment is a valid object
 }
}

Tip

It is also possible to add an additional validator for a sub object of the argument, using
the “dot-notation”: @Flow\Validate(argumentName="comment.text", type="....").

However, it is a rather rare use-case that a validation rule needs to be defined only in the controller.

Using Validators & The ValidatorResolver

A validator is a PHP class being responsible for checking validity of a certain object or
simple type.

All validators implement \Neos\Flow\Validation\Validator\ValidatorInterface, and
the API of every validator is demonstrated in the following code example:

// NOTE: you should always use the ValidatorResolver to create new
// validators, as it is demonstrated in the next section.
$validator = new \Neos\Flow\Validation\Validator\StringLengthValidator(array(
 'minimum' => 10,
 'maximum' => 20
));

// $result is of type Neos\Error\Messages\Result
$result = $validator->validate('myExampleString');
$result->hasErrors(); // is FALSE, as the string is longer than 10 characters.

$result = $validator->validate('short');
$result->hasErrors(); // is TRUE, as the string is too short.
$result->getFirstError()->getMessage(); // contains the human-readable error message

On the above example, it can be seen that validators can be re-used for different input.
Furthermore, a validator does not only just return TRUE or FALSE, but instead returns
a Result object which you can ask whether any errors happened. Please see the API
for a detailed description.

Note

The Neos\Error\Messages\Result object has been introduced in order to
make more structured error output possible – which is especially needed when
objects with sub-properties should be validated recursively.

Creating Validator Instances: The ValidatorResolver

As validators can be both singleton or prototype objects (depending if they have internal state),
you should not instantiate them directly as it has been done in the above example. Instead,
you should use the \Neos\Flow\Validation\ValidatorResolver singleton to get a new instance
of a certain validator:

$validatorResolver->createValidator($validatorType, array $validatorOptions);

$validatorType can be one of the following:

	a fully-qualified class name to a validator, like Your\Package\Validation\Validator\FooValidator

	If you stick to the <PackageKey>\Validation\Validator\<ValidatorName>Validator convention,
you can also fetch the above validator using Your.Package:Foo as $validatorType.

This is the recommended way for custom validators.

	For the standard validators inside the Neos.Flow package, you can leave out the package key,
so you can use EmailAddress to fetch Neos\Flow\Validation\Validator\EmailAddressValidator

The $validatorOptions parameter is an associative array of validator options. See the validator
reference in the appendix for the configuration options of the built-in validators.

Default Validators

Flow is shipped with a big list of validators which are ready to use – see the appendix for the full
list. Here, we just want to highlight some more special validators.

Additional to the simple validators for strings, numbers and other basic types, Flow has a few powerful
validators shipped:

	GenericObjectValidator validates an object by validating all of its properties. This validator
is often used internally, but will rarely be used directly.

	CollectionValidator validates a collection of objects. This validator is often used internally,
but will rarely be used directly.

	ConjunctionValidator and DisjunctionValidator implement logical AND / OR conditions.

Furthermore, almost all validators of simple types regard NULL and the empty string ('') as valid.
The only exception is the NotEmpty validator, which disallows both NULL and empty string. This means
if you want to validate that a property is e.g. an email address and does exist, you need to combine the two
validators using a ConjunctionValidator:

$conjunctionValidator = $validatorResolver->createValidator('Conjunction');
$conjunctionValidator->addValidator($validatorResolver->createValidator('NotEmpty'));
$conjunctionValidator->addValidator($validatorResolver->createValidator('EmailAddress'));

Validating Domain Models

It is very common that a full Domain Model should be validated instead of only a simple type.
To make this use-case more easy, the ValidatorResolver has a method getBaseValidatorConjunction
which returns a fully-configured validator for an arbitrary Domain Object:

$commentValidator = $validatorResolver->getBaseValidatorConjunction('YourPackage\Domain\Model\Comment');
$result = $commentValidator->validate($comment);

The returned validator checks the following things:

	All property validation rules configured through @Flow\Validate annotations on properties of the model:

namespace YourPackage\Domain\Model;
use Neos\Flow\Annotations as Flow;

class Comment
{

 /**
 * @Flow\Validate(type="NotEmpty")
 */
 protected $text;

 // Add getters and setters here
}

It also correctly builds up validators for Collections or arrays, if they are properly
typed (Doctrine\Common\Collection<YourPackage\Domain\Model\Author>).

	In addition to validating the individual properties on the model, it checks whether a designated Domain Model
Validator exists; i.e. for the Domain Model YourPackage\Domain\Model\Comment it is checked
whether YourPackage\Domain\Validator\CommentValidator exists. If it exists, it is automatically
called on validation.

These Domain Model Validators can also mark some specific properties as failed and add specific error messages:

class CommentValidator extends AbstractValidator
{
 public function isValid($value)
 {
 if ($value instanceof \YourPackage\Domain\Model\Comment) {
 $this->pushResult()->forProperty('text')->addError(
 new Error('text can´t be empty.', 1221560910)
);
 }
 }
}

Normally, you would need to annotate Collection and Model type properties, so that the collection elements and
the model would be validated like this:

/**
 * @var SomeDomainModel
 * @Flow\Validate(type="GenericObject")
 */
protected $someRelatedModel;

/**
 * @var Collection<SomeOtherDomainModel>
 * @Flow\Validate(type="Collection")
 */
protected $someOtherRelatedModels;

For convenience, those validators will be added automatically if they are left out, because Flow will always validate
Model hierarchies. In some cases, it might be necessary to override validation behaviour of those properties,
e.g. when you want to limit validation with Validation Groups (see below). In that case, you can just explicitly annotate
the property with additional options and this will then override the automatically generated validator.

When specifying a Domain Model as an argument of a controller action, all the above validations will be
automatically executed. This is explained in detail in the following section.

Validation on Aggregates

In Domain Driven Design, the Aggregate is to be considered a consistency boundary, meaning that the whole
Aggregate needs to preserve it’s invariants at all times. For that reason, validation inside an Aggregate will
cascade into all entities and force relations to be loaded. So if you have designed large Aggregates with a deep
hierarchy of many n-ToMany relations, validation can easily become a performance bottleneck.

It is therefore, but not limited to this reason, highly recommended to keep your Aggregates small. The validation
will stop at an Aggregate Root, if the relation to it is lazy and not yet loaded. Entity relations are lazy by default,
and as long as you don’t also submit parts of the related Aggregate, it will not get loaded before the validation
kicks in.

Tip

Be careful though, that loading the related Aggregate in your Controller will still make it get validated
during persistence. That is another good reason why you should try to minimize relations between Aggregates and if
possible, try to stick to a simple identifier instead of an object relation.

For a good read on designing Aggregates, you are highly encouraged to take a read on Vaughn Vernon’s essay series
Effective Aggregate Design [https://vaughnvernon.co/?p=838].

Advanced Feature: Partial Validation

If you only want to validate parts of your objects, f.e. want to store incomplete objects in
the database, you can assign special Validation Groups to your validators.

It is possible to specify a list of validation groups at each @Flow\Validate annotation,
if none is specified the validation group Default is assigned to the validator.

When invoking validation, f.e. in the MVC layer or in persistence, only validators with
certain validation groups are executed:

	In MVC, the validation group Default and Controller is used.

	In persistence, the validation group Default and Persistence is used.

Additionally, it is possible to specify a list of validation groups at each controller action
via the @Flow\ValidationGroups annotation. This way, you can override the default
validation groups that are invoked on this action call, for example when you need to
validate uniqueness of a property like an e-mail adress only in your createAction.

A validator is only executed if at least one validation group overlap.

The following example demonstrates this:

class Comment
{

 /**
 * @Flow\Validate(type="NotEmpty")
 */
 protected $prop1;

 /**
 * @Flow\Validate(type="NotEmpty", validationGroups={"Default"})
 */
 protected $prop2;

 /**
 * @Flow\Validate(type="NotEmpty", validationGroups={"Persistence"})
 */
 protected $prop3;

 /**
 * @Flow\Validate(type="NotEmpty", validationGroups={"Controller"})
 */
 protected $prop4;

 /**
 * @Flow\Validate(type="NotEmpty", validationGroups={"createAction"})
 */
 protected $prop5;
}

class CommentController extends \Neos\Flow\Mvc\Controller\ActionController
{

 /**
 * @param Comment $comment
 * @Flow\ValidationGroups({"createAction"})
 */
 public function createAction(Comment $comment)
 {
 ...
 }
}

	validation for prop1 and prop2 are the same, as the “Default” validation group is added if none is specified

	validation for prop1 and prop2 are executed both on persisting and inside the controller

	validation for $prop3 is only executed in persistence, but not in controller

	validation for $prop4 is only executed in controller, but not in persistence

	validation for $prop5 is only executed in createAction, but not in persistence

If interacting with the ValidatorResolver directly, the to-be-used validation groups
can be specified as the last argument of getBaseValidatorConjunction().

Note

When trying to set the validation groups of a collection or a whole model, which are normally not annotated for
you can explicitly specify a “Collection” or “GenericObject” type validator on the property and set the according validationGroup.

Avoiding Duplicate Validation and Recursion

Unlike simple types, objects (or collections) may reference other objects, potentially leading
to recursion during the validation and multiple validation of the same instance.

To avoid this the GenericObjectValidator as well as anything extending AbstractCompositeValidator
keep track of instances that have already been validated. The container to keep track of these instances
can be (re-)set using setValidatedInstancesContainer defined in the ObjectValidatorInterface.

Flow resets this container before doing validation automatically. If you use validation directly in
your controller, you should reset the container directly before validation, after any changes have been
done.

When implementing your own validators (see below), you need to pass the container around and check instances
against it. See AbstractCompositeValidator and isValidatedAlready in the GenericObjectValidator
for examples of how to do this.

Writing Validators

Usually, when writing your own validator, you will not directly implement ValidatorInterface, but
rather subclass AbstractValidator. You only need to specify any options your validator might use and
implement the isValid() method then:

/**
 * A validator for checking items against foos.
 */
class MySpecialValidator extends \Neos\Flow\Validation\Validator\AbstractValidator
{

 /**
 * @var array
 */
 protected $supportedOptions = array(
 'foo' => array(NULL, 'The foo value to accept as valid', 'mixed', TRUE)
);

 /**
 * Check if the given value is a valid foo item. What constitutes a valid foo is determined through the 'foo' option.
 *
 * @param mixed $value
 * @return void
 */
 protected function isValid($value) {
 if (!isset($this->options['foo'])) {
 throw new \Neos\Flow\Validation\Exception\InvalidValidationOptionsException(
 'The option "foo" for this validator needs to be specified', 12346788
);
 }

 if ($value !== $this->options['foo']) {
 $this->addError('The value must be equal to "%s"', 435346321, array($this->options['foo']));
 }
 }
}

In the above example, the isValid() method has been implemented, and the parameter $value is the
data we want to check for validity. In case the data is valid, nothing needs to be done.

Warning

You should avoid overwriting validate() and if you do, you should never overwrite $this->result
instance variable of the validator. Instead, use pushResult() to create a new result object and at
the end of your validator, return popResult().

In case the data is invalid, $this->addError() should be used to add an error message, an error code
(which should be the unix timestamp of the current time) and optional arguments which are inserted into
the error message.

The options of the validator can be accessed in the associative array $this->options. The options
must be declared as shown above. The $supportedOptions array is indexed by option name and each value
is an array with the following numerically indexed elements:

default value of the option
description of the option (used for documentation rendering)
type of the option (used for documentation rendering)
required option flag (optional, defaults to FALSE)

The default values are set in the constructor of the abstract validators provided with Flow. If the
required flag is set, missing options will cause an InvalidValidationOptionsException to be thrown
when the validator is instantiated.

In case you do further checks on the options and any of them is invalid, an
InvalidValidationOptionsException should be thrown as well.

Tip

Because you extended AbstractValidator in the above example, NULL and empty string
are automatically regarded as valid values; as it is the case for all other validators.
If you do not want to accept empty values, you need to set the class property
$acceptsEmptyValues to FALSE.

Property Mapping

The Property Mappers task is to convert simple types, like arrays, strings, numbers,
to objects. This is most prominently needed in the MVC framework: When a request
arrives, it contains all its data as simple types, that is strings, and arrays.

We want to help the developer thinking about objects, that’s why we try to
transparently convert the incoming data to its correct object representation.
This is the objective of the Property Mapper.

At first, we show some examples on how the property mapper can be used, and then
the internal structure is explained.

The main API of the PropertyMapper is very simple: It just consists of one method
convert($source, $targetType), which receives input data as the first argument,
and the target type as second argument. This method returns the built object of type
$targetType.

Example Usage

The most simple usage is to convert simple types to different simple types, i.e.
converting a numeric string to a float number:

// $propertyMapper is of class Neos\Flow\Property\PropertyMapper
$result = $propertyMapper->convert('12.5', 'float');
// $result == (float)12.5

This is of course a really conceived example, as the same result could be achieved
by just casting the numeric string to a floating point number.

Our next example goes a bit further and shows how we can use the Property Mapper
to convert an array of data into a domain model:

/**
 * @Flow\Entity
 */
class Neos\MyPackage\Domain\Model\Person {
 /**
 * @var string
 */
 protected $name;

 /**
 * @var \DateTime
 */
 protected $birthDate;

 /**
 * @var Neos\MyPackage\Domain\Model\Person
 */
 protected $mother;
 // ... furthermore contains getters and setters for the above properties.
}

$inputArray = array(
 'name' => 'John Fisher',
 'birthDate' => '1990-11-14T15:32:12+00:00'
);
$person = $propertyMapper->convert($inputArray, \Neos\MyPackage\Domain\Model\Person::class);

// $person is a newly created object of type Neos\MyPackage\Domain\Model\Person
// $person->name == 'John Fisher'
// $person->birthDate is a DateTime object with the correct date set.

We’ll first use a simple input array:

$input = array(
 'name' => 'John Fisher',
 'birthDate' => '1990-11-14T15:32:12+00:00'
);

After calling $propertyMapper->convert($input, \Neos\MyPackage\Domain\Model\Person::class),
we receive an ew object of type Person which has $name set to John Fisher,
and $birthDate set to a DateTime object of the specified date. You might
now wonder how the PropertyMapper knows how to convert DateTime objects and
Person objects? The answer is: It does not know that. However, the PropertyMapper
calls specialized Type Converters which take care of the actual conversion.

In our example, three type converters are called:

	First, to convert ‘John Fisher’ to a string (required by the annotation in the
domain model), a StringConverter is called. This converter simply passes
through the input string, without modification.

	Then, a DateTimeConverter is called, whose responsibility is to convert the
input string into a valid DateTime object.

	At the end, the Person object still needs to be built. For that, the
PersistentObjectConverter is responsible. It creates a fresh Person object,
and sets the $name and $birthDate properties which were already built
using the type converters above.

This example should illustrate that property mapping is a recursive process, and
the PropertyMappers task is exactly to orchestrate the different TypeConverters
needed to build a big, compound object.

The PersistentObjectConverter has some more features, as it supports fetching
objects from the persistence layer if an identity for the object is given. Both
the following inputs will result in the corresponding object to be fetched from
the persistence layer:

$input = '14d20100-9d70-11e0-aa82-0800200c9a66';
// or:
$input = array(
 '__identity' => '14d20100-9d70-11e0-aa82-0800200c9a66'
);

$person = $propertyMapper->convert($input, 'MyCompany\MyPackage\Domain\Model\Person');
// The $person object with UUID 14d20100-9d70-11e0-aa82-0800200c9a66 is fetched from the persistence layer

In case some more properties are specified in the array (besides __identity),
the submitted properties are modified on the fetched object. These modifications are
not automatically saved to the database at the end of the request, you need to pass
such an instance to update on the corresponding repository to persist the changes.

So, let’s walk through a more complete input example:

$input = array(
 '__identity' => '14d20100-9d70-11e0-aa82-0800200c9a66',
 'name' => 'John Doe',
 'mother' => 'efd3b461-6f24-499d-97bc-309dfbe01f05'
);

In this case, the following steps happen:

	The Person object with identity 14d20100-9d70-11e0-aa82-0800200c9a66 is
fetched from persistence.

	The $name of the fetched $person object is updated to John Doe

	As the $mother property is also of type Person, the PersistentObjectConverter
is invoked recursively. It fetches the Person object with identifier
efd3b461-6f24-499d-97bc-309dfbe01f05, which is then set as the $mother
property of the original person.

Here, you see that we can also set associations using the Property Mapper.

Configuring the Conversion Process

It is possible to configure the conversion process by specifying a
PropertyMappingConfiguration as third parameter to PropertyMapper::convert().
If no PropertyMappingConfiguration is specified, the PropertyMappingConfigurationBuilder
automatically creates a default PropertyMappingConfiguration.

In most cases, you should use the PropertyMappingConfigurationBuilder to create a new
PropertyMappingConfiguration, so that you get a convenient default configuration:

 // Here $propertyMappingConfigurationBuilder is an instance of
 // \Neos\Flow\Property\PropertyMappingConfigurationBuilder
$propertyMappingConfiguration = $propertyMappingConfigurationBuilder->build();

 // modify $propertyMappingConfiguration here

 // pass the configuration to convert()
$propertyMapper->convert($source, $targetType, $propertyMappingConfiguration);

The following configuration options exist:

	setMapping($sourcePropertyName, $targetPropertyName) can be used to rename properties.

Example: If the input array contains a property lastName, but the accordant
property in the model is called $givenName, the following configuration performs
the renaming:

$propertyMappingConfiguration->setMapping('lastName', 'givenName');

	setTypeConverter($typeConverter) can be used to directly set a type converter
which should be used. This disables the automatic resolving of type converters.

	setTypeConverterOption($typeConverterClassName, $optionKey, $optionValue)
can be used to set type converter specific options.

Example: The DateTimeConverter supports a configuration option for the expected
date format:

$propertyMappingConfiguration->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\DateTimeConverter::class,
 \Neos\Flow\Property\TypeConverter\DateTimeConverter::CONFIGURATION_DATE_FORMAT,
 'Y-m-d'
);

	setTypeConverterOptions($typeConverterClassName, array $options) can be used
to set multiple configuration options for the given TypeConverter. This overrides
all previously set configuration options for the TypeConverter.

	allowProperties($propertyName1, $propertyName2, ...) specifies the allowed
property names which should be converted on the current level.

	allowAllProperties() allows all properties on the current level.

	allowAllPropertiesExcept($propertyName1, $propertyName2) effectively inverts
the behavior: all properties on the current level are allowed, except the ones
specified as arguments to this method.

All the configuration options work only for the current level, i.e. all of the
above converter options would only work for the top level type converter. However,
it is also possible to specify configuration options for lower levels, using
forProperty($propertyPath). This is best shown with the example from the previous section.

The following configuration sets a mapping on the top level, and furthermore
configures the DateTime converter for the birthDate property:

$propertyMappingConfiguration->setMapping('fullName', 'name');
$propertyMappingConfiguration
 ->forProperty('birthDate')
 ->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\DateTimeConverter::class,
 \Neos\Flow\Property\TypeConverter\DateTimeConverter::CONFIGURATION_DATE_FORMAT,
 'Y-m-d'
);

forProperty() also supports more than one nesting level using the dot notation,
so writing something like forProperty('mother.birthDate') is possible. For multi-valued
property types (Doctrine\Common\Collections\Collection or array) the property mapper
will use indexes as property names. To match the property mapping configuration for any index,
the path syntax supports an asterisk as a placeholder:

$propertyMappingConfiguration
 ->forProperty('items.*')
 ->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\PersistentObjectConverter::class,
 \Neos\Flow\Property\TypeConverter\PersistentObjectConverter::CONFIGURATION_CREATION_ALLOWED,
 TRUE
);

This also allows to easily configure TypeConverter options, like for the DateTimeConverter, for subproperties
on large collections:

$propertyMappingConfiguration
 ->forProperty('persons.*.birthDate')
 ->setTypeConvertOption(
 \Neos\Flow\Property\TypeConverter\DateTimeConverter::class,
 \Neos\Flow\Property\TypeConverter\DateTimeConverter::CONFIGURATION_DATE_FORMAT,
 'Y-m-d'
);

Property Mapping Configuration in the MVC stack

The most common use-case where you will want to adjust the Property Mapping Configuration
is inside the MVC stack, where incoming arguments are converted to objects.

If you use Fluid forms, normally no adjustments are needed. However, when programming
a web service or an ajax endpoint, you might need to set the PropertyMappingConfiguration
manually. You can access them using the \Neos\Flow\Mvc\Controller\Argument
object – and this configuration takes place inside the corresponding initialize*Action
of the controller, as in the following example:

protected function initializeUpdateAction() {
 $commentConfiguration = $this->arguments['comment']->getPropertyMappingConfiguration();
 $commentConfiguration->allowAllProperties();
 $commentConfiguration
 ->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\PersistentObjectConverter::class,
 \Neos\Flow\Property\TypeConverter\PersistentObjectConverter::CONFIGURATION_CREATION_ALLOWED,
 TRUE
);
}

/**
 * @param \My\Package\Domain\Model\Comment $comment
 */
public function updateAction(\My\Package\Domain\Model\Comment $comment) {
 // use $comment object here
}

Tip

Maintain IDE’s awareness of the Argument variable type

Most IDEs will lose information about the variable’s type when it comes to array accessing
like in the above example $this->arguments['comment']->…. In order to keep track of
the variables’ types, you can synonymously use

protected function initializeUpdateAction() {
 $commentConfiguration = $this->arguments->getArgument('comment')->getPropertyMappingConfiguration();
 …

Since the getArgument() method is explicitly annotated, common IDEs will recognize the type
and there is no break in the type hinting chain.

Security Considerations

The property mapping process can be security-relevant, as a small example should
show: Suppose there is a REST API where a person can create a new account, and assign
a role to this account (from a pre-defined list). This role controls the access
permissions the user has. The data which is sent to the server might look like this:

array(
 'username' => 'mynewuser',
 'role' => '5bc42c89-a418-457f-8095-062ace6d22fd'
);

Here, the username field contains the name of the user, and the role field points
to the role the user has selected. Now, an attacker could modify the data, and submit the
following:

array(
 'username' => 'mynewuser',
 'role' => array(
 'name' => 'superuser',
 'admin' => 1
)
);

As the property mapper works recursively, it would create a new Role object with the
admin flag set to TRUE, which might compromise the security in the system.

That’s why two parts need to be configured for enabling the recursive behavior: First, you need
to specify the allowed properties using one of the allowProperties(), allowAllProperties()
or allowAllPropertiesExcept() methods.

Second, you need to configure the the PersistentObjectConverter using the two options
CONFIGURATION_MODIFICATION_ALLOWED and CONFIGURATION_CREATION_ALLOWED. They
must be used to explicitly activate the modification or creation of objects. By
default, the PersistentObjectConverter does only fetch objects from the persistence,
but does not create new ones or modifies existing ones.

Note

The only exception to this rule are Value Objects, which may always be created newly by default,
as this makes sense as of their nature. If you have a use case where the user may not
create new Value Objects, for example because he may only choose from a fixed list, you can
however explicitly disallow creation by setting the appropriate property’s
CONFIGURATION_CREATION_ALLOWED option to FALSE.

Default Configuration

If the Property Mapper is called without any PropertyMappingConfiguration, the
PropertyMappingConfigurationBuilder supplies a default configuration.

It allows all changes for the top-level object, but does not allow anything
for nested objects.

Note

In the MVC stack, the default PropertyMappingConfiguration is much more restrictive,
not allowing any changes to any objects. See the next section for an in-depth
explanation.

The Common Case: Fluid Forms

The Property Mapper is used to convert incoming values into objects inside the MVC stack.

Most commonly, these incoming values are created using HTML form elements inside
Fluid. That is why we want to make sure that only fields which are part of the
form are accepted for type conversion, and it should neither be possible to create
new objects nor to modify existing ones if that was not intended.

Because of that, the PropertyMappingConfiguration inside the MVC stack is
configured as restrictive as possible, not allowing any modifications of any
objects at all.

Furthermore, Fluid forms render an additional hidden form field containing a
secure list of all properties being transmitted; and this list is used to build
up the correct PropertyMappingConfiguration.

As a result, it is not possible to manipulate the request on the client side,
but as long as Fluid forms are used, no extra work has to be done by the developer.

Reference of TypeConverters

Note

This should be automatically generated from the source and will be
added to the appendix if available.

The Inner Workings of the Property Mapper

The Property Mapper applies the following steps to convert a simple type to an
object. Some of the steps will be described in detail afterwards.

	Figure out which type converter to use for the given source - target pair.

	Ask this type converter to return the child properties of the source data
(if it has any), by calling getSourceChildPropertiesToBeConverted() on
the type converter.

	For each child property, do the following:

	Ask the type converter about the data type of the child property, by calling
getTypeOfChildProperty() on the type converter.

	Recursively invoke the PropertyMapper to build the child object from the input data.

	Now, call the type converter again (method convertFrom()), passing all (already
built) child objects along. The result of this call is returned as the final result of the
property mapping process.

On first sight, the steps might seem complex and difficult, but they account for
a great deal of flexibility of the property mapper.
Automatic resolving of type converters

Automatic Resolving of Type Converters

All type converters which implement Neos\Flow\Property\TypeConverterInterface
are automatically found in the resolving process. There are four API methods in
each TypeConverter which influence the resolving process:

	getSupportedSourceTypes()

	Returns an array of simple types which are understood as source type by this type
converter.

	getSupportedTargetType()

	The target type this type converter can convert into. Can be either a simple type,
or a class name.

	getPriority()

	If two type converters have the same source and target type, precedence
is given to the one with higher priority. All standard TypeConverters
have a priority lower than 100.
A priority of -1 disables automatic resolution for the given TypeConverter!

	canConvertFrom($source, $targetType)

	Is called as last check, when source and target types fit together. Here, the
TypeConverter can implement runtime constraints to decide whether it can do
the conversion.

When a type converter has to be found, the following algorithm is applied:

	If typeConverter is set in the PropertyMappingConfiguration, this is directly used.

	The inheritance hierarchy of the target type is traversed in reverse order (from
most specific to generic) until a TypeConverter is found. If two type converters
work on the same class, the one with highest positive priority is used.

	If no type converter could be found for the direct inheritance hierarchy, it is
checked if there is a TypeConverter for one of the interfaces the target class
implements. As it is not possible in PHP to order interfaces in any meaningful
way, the TypeConverter with the highest priority is used (throughout all interfaces).

	If no type converter is found in the interfaces, it is checked if there is an
applicable type converter for the target type object.

If a type converter is found according to the above algorithm, canConvertFrom is
called on the type converter, so he can perform additional runtime checks. In case
the TypeConverter returns FALSE, the search is continued at the position
where it left off in the above algorithm.

For simple target types, the steps 2 and 3 are omitted.

Writing Your Own TypeConverters

Often, it is enough to subclass
Neos\Flow\Property\TypeConverter\AbstractTypeConverter
instead of implementing TypeConverterInterface.

Besides, good starting points for own type converters are the DateTimeConverter
or the IntegerConverter. If you write your own type converter, you should set
it to a priority greater than 100, to make sure it is used before the standard
converters by Flow.

TypeConverters should not contain any internal state, as they are re-used by the
property mapper, even recursively during the same run.

Of further importance is the exception and error semantics, so there are a few
possibilities what can be returned in convertFrom():

	For fatal errors which hint at some wrong configuration of the developer, throw
an exception. This will show a stack trace in development context. Also for
detected security breaches, exceptions should be thrown.

	If at run-time the type converter does not wish to participate in the results,
NULL should be returned. For example, if a file upload is expected, but there
was no file uploaded, returning NULL would be the appropriate way to handling
this.

	If the error is recoverable, and the user should re-submit his data, return a
Neos\Error\Messages\Error object (or a subclass thereof), containing information
about the error. In this case, the property is not mapped at all (NULL is
returned, like above).

If the Property Mapping occurs in the context of the MVC stack (as it will be the
case in most cases), the error is detected and a forward is done to the last shown
form. The end-user experiences the same flow as when MVC validation errors happen.

This is the correct response for example if the file upload could not be processed
because of wrong checksums, or because the disk on the server is full.

Warning

Inside a type converter it is not allowed to use an (injected) instance
of Neos\Flow\Property\PropertyMapper because it can lead to an
infinite recursive invocation.

Note

With version 4.0 TypeConverters with a negative priority will be skipped by the
PropertyMapper by default. The PropertyMappingConfiguration can be used to
explicitly use such converter anyways.

Resource Management

Traditionally a PHP application deals directly with all kinds of files. Realizing a file
upload is usually an excessive task because you need to create a proper upload form, deal
with deciphering the $_FILES superglobal and move the uploaded file from the temporary
location to a safer place. You also need to analyze the content (is it safe?), control web
access and ultimately delete the file when it’s not needed anymore.

Flow relieves you of this hassle and lets you deal with simple PersistentResource instances
instead. File uploads are handled automatically, enforcing the restrictions which were
configured by means of validation rules. The publishing mechanism was designed to support
a wide range of scenarios, starting from simple publication to the local file system up to
fine grained access control and distribution to one or more content delivery networks.
This all works without any further ado by you, the application developer.

Storage

The file contents belonging to a specific PersistentResource need to be stored in some place, they
are not stored in the database together with the object. Applications should be able to store this
content in several places as needed, therefor the concept of a Storage exists.
A Storage is configured via Settings.yaml:

Neos:
 Flow:
 resource:
 storages:
 defaultPersistentResourcesStorage:
 storage: 'Neos\Flow\ResourceManagement\Storage\WritableFileSystemStorage'
 storageOptions:
 path: '%FLOW_PATH_DATA%Persistent/Resources/'

The configuration for the defaultPersistentResourceStorage (naming for further storages is up
to the developer) uses a specific Storage implementation class that abstracts the operations needed
for a storage. In this case it is the WritableFileSystemStorage which stores data in a given path
on the local file system of the application. Custom implementations allow you to store their resource
contents in other places as needed. You can configure as many storages as you want to separate
different types of resources, like your users avatars, generated invoices or any other type of resource
you have.

Flow comes configured with two storages by default:

	defaultStaticResourcesStorage is the storage for static resources from your packages. This storage
is readonly and does not operate on PersistentResource instances. See additional information about package
resources below.

	defaultPersistentResourcesStorage is the general storage for PersistentResource content. This
storage is used as default if nothing else is specified. Custom storages will most likely be similar
to this storage so all of the information below applies.

Target

Flow is a web application framework and as such some (or most) of the resources in the system need
to be made accessible online. The resource storages are not meant to be accessible so a Target is a
configured way of telling how resources are to be published to the web. The default target for our
persistent storage above is configured like this:

Neos:
 Flow:
 resource:
 targets:
 localWebDirectoryPersistentResourcesTarget:
 target: 'Neos\Flow\ResourceManagement\Target\FileSystemSymlinkTarget'
 targetOptions:
 path: '%FLOW_PATH_WEB%_Resources/Persistent/'
 baseUri: '_Resources/Persistent/'

This configures the Target named localWebDirectoryPersistentResourcesTarget. Resources using this
target will be published into the the given path which is inside the public web folder of Flow.
The class Neos\Flow\ResourceManagement\Target\FileSystemSymlinkTarget is the implementation responsible for
publishing the resources and providing public URIs to it. From the name you can guess that it creates
symlinks to the resources stored on the local filesystem to save space. Other Target implementations
could publish the resources to CDNs or other external locations that are publicly accessible.

If you have lots of resources in your project you might run into problems when executing ./flow resource:publish since the number of folders can be limited depending on the file system you’re using.
An error that might occur in this case is “Could not create directory”.
To circumvent this error you can tell Flow to split the resources into multiple subfolders in the _Resources/Persistent folder of your Web root.
The option for your Target you need to set in this case is subdivideHashPathSegment: TRUE.

Neos:
 Flow:
 resource:
 targets:
 localWebDirectoryPersistentResourcesTarget:
 target: 'Neos\Flow\ResourceManagement\Target\FileSystemSymlinkTarget'
 targetOptions:
 path: '%FLOW_PATH_WEB%_Resources/Persistent/'
 baseUri: '_Resources/Persistent/'
 subdivideHashPathSegment: TRUE

Collections

Flow bundles your PersistentResource``s into collections to allow separation of different types of
resources. A ``Collection is the binding between a Storage and a Target and each PersistentResource
belongs to exactly one Collection and by that is stored in the matching storage and published to the
matching target. You can configure as many collections as you need for specific parts of your application.
Flow comes preconfigured with two default collections:

	static which is the collection using the defaultStaticResourcesStorage and
localWebDirectoryStaticResourcesTarget to work with (static) package resources. This Collection
is meant read-only, which is reflected by the storage used. In this Collection all resources from all
packages Resources/Public/ folders reside.

	persistent which is the collection using the Storage and Target described in the respective
section above to store any PersistentResource contents by default. Any new PersistentResource you create will
end up in this storage if not set differently.

Package Resources

Flow packages may provide any amount of static resources. They might be images,
stylesheets, javascripts, templates or any other file which is used within the application
or published to the web. Static resources may either be public or private:

	public resources are represented by the static Collection described above and published to
a web accessible path.

	private resources are not published by default. They can either be used internally (for
example as templates) or published with certain access restrictions.

Whether a static package resource is public or private is determined by its parent
directory. For a package Acme.Demo the public resources reside in a folder called
Acme.Demo/Resources/Public/ while the private resources are stored in
Acme.Demo/Resources/Private/. The directory structure below Public and Private is up
to you but there are some suggestions in the chapter about package management.
Both private and public package resources are not represented by PersistentResource instances in the database.

Persistent Resources

Data which was uploaded by a user or generated by your application is called a persistent
resource. Although these resources are usually stored as files, they are never referred
to by their path and filename directly but are represented by PersistentResource instances.

Note

It is important to completely ignore the fact that resources are stored as files
somewhere – you should only deal with resource objects, this allows your application to scale by
using remote resource storages.

New persistent resources can be created by either importing or uploading a file. In either
case the result is a new PersistentResource which can be attached to any other object. As soon as the
PersistentResource is removed (can happen by cascade operations of related domain objects if you want)
the file data is removed too if it is no longer needed by another PersistentResource.

Importing Resources

Importing resources is one way to create a new resource object. The ResourceManager
provides a simple API method for this purpose:

Example: Importing a new resource

class ImageController {

 /**
 * @Flow\Inject
 * @var \Neos\Flow\ResourceManagement\ResourceManager
 */
 protected $resourceManager;

 // ... more code here ...

 /**
 * Imports an image
 *
 * @param string $imagePathAndFilename
 * @return void
 */
 public function importImageAction($imagePathAndFilename) {
 $newResource = $this->resourceManager->importResource($imagePathAndFilename);

 $newImage = new \Acme\Demo\Domain\Model\Image();
 $newImage->setOriginalResource($newResource);

 $this->imageRepository->add($newImage);
 }
}

The ImageController in our example provides a method to import a new image. Because an
image consists of more than just the image file (we need a title, caption, generate a
thumbnail, …) we created a whole new model representing an image. The imported resource
is considered as the “original resource” of the image and the Image model could easily
provide a “thumbnail resource” for a smaller version of the original.

This is what happens in detail while executing the importImageAction method:

	The URI (in our case an absolute path and filename) is passed to the importResource()
method which analyzes the file found at that location.

	The file is imported into Flow’s persistent resources storage using the sha1 hash over
the file content as its filename. If a file with exactly the same content is imported
it will reuse the already stored file data.

	The ResourceManager returns a new PersistentResource which refers to the newly
imported file.

	A new Image object is created and the resource is attached to it.

	The image is added to the ImageRepository to persist it.

In order to delete a resource just disconnect the resource object from the persisted
object, for example by unsetting originalResource in the Image object and call the
deleteResource() method in the ResourceManager.

The importResource() method also accepts stream resources instead of file URIs to fetch the
content from and you can give the name of the resource Collection as second argument to define
where to store your new resource.

If you already have the new resource`s content available as a string you can use
importResourceFromContent() to create a resource object from that.

Resource Uploads

The second way to create new resources is uploading them via a POST request. Flow’s MVC
framework detects incoming file uploads and automatically converts them into PersistentResource
instances. In order to persist an uploaded resource you only need to persist the resulting
object.

Consider the following Fluid template:

<f:form method="post" action="create" object="{newImage}" objectName="newImage"
 enctype="multipart/form-data">
 <f:form.textfield property="title" value="My image title" />
 <f:form.upload property="originalResource" />
 <f:form.submit value="Submit new image"/>
</f:form>

This form allows for submitting a new image which consists of an image title and the image
resource (e.g. a JPEG file). The following controller can handle the submission of the above
form:

class ImageController {

 /**
 * Creates a new image
 *
 * @param \Acme\Demo\Domain\Model\Image $newImage The new image
 * @return void
 */
 public function createAction(\Acme\Demo\Domain\Model\Image $newImage) {
 $this->imageRepository->add($newImage);
 $this->forward('index');
 }
}

Provided that the Image class has a $title and a $originalResource property and
that they are accessible through setTitle() and setOriginalResource() respectively the
above code will work just as expected:

use Doctrine\ORM\Mapping as ORM;

class Image {

 /**
 * @var string
 */
 protected $title;

 /**
 * @var \Neos\Flow\ResourceManagement\PersistentResource
 * @ORM\OneToOne
 */
 protected $originalResource;

 /**
 * @param string $title
 * @return void
 */
 public function setTitle($title) {
 $this->title = $title;
 }

 /**
 * @return string
 */
 public function getTitle() {
 return $this->title;
 }

 /**
 * @param \Neos\Flow\ResourceManagement\PersistentResource $originalResource
 * @return void
 */
 public function setOriginalResource(\Neos\Flow\ResourceManagement\PersistentResource $originalResource) {
 $this->originalResource = $originalResource;
 }

 /**
 * @return \Neos\Flow\ResourceManagement\PersistentResource
 */
 public function getOriginalResource() {
 return $this->originalResource;
 }
}

All resources are imported into the default persistent Collection if nothing else was configured.
You can either set an alternative collection name in the template.

<f:form method="post" action="create" object="{newImage}" objectName="newImage"
 enctype="multipart/form-data">
 <f:form.textfield property="title" value="My image title" />
 <f:form.upload property="originalResource" collection="images" />
 <f:form.submit value="Submit new image"/>
</f:form>

Or you can define it in your property mapping configuration like this:

$propertyMappingConfiguration
 ->forProperty('originalResource')
 ->setTypeConverterOption(
 \Neos\Flow\ResourceManagement\ResourceTypeConverter::class,
 \Neos\Flow\ResourceManagement\ResourceTypeConverter::CONFIGURATION_COLLECTION_NAME,
 'images'
);

Both variants would import the uploaded resource into a collection named images.
All import methods in the ResourceManager described above allow setting the collection as well.

Tip

If you want to see the internals of file uploads you can check the ResourceTypeConverter code.

Accessing Resources

There are multiple ways of accessing your resource`s data depending on what you want to do.
Either you need a web accessible URI to a resource to display or link to it or you need the raw data
to process it further (like image manipulation for example).

To provide URIs your resources have to be published. For newly created PersistentResource objects
this happens automatically. Package resources have to be published at least once by running the
resource:publish command:

path$./flow resource:publish

This will publish all collections, you can also just publish the static Collection by using the
--collection argument.

Why Flow uses symbolic links by default

Publishing resources basically means copying files from the Storage location to the Target.
In the default configuration Flow instead creates symbolic links, making the resources
consume less disk space and work faster. By changing the Target configuration you can change this.

Package Resources

Static resources (provided by packages) need to be published by the resource:publish command.
If you do not change the default configuration the whole Resources/Public/ folder is symlinked, which
means you probably never need to publish again. If you configure some other Target make sure to
publish the static collection whenever your package resources change.

To get the URI to a published package resource you can use the getPublicPersistentResourceUri()
method in the ResourceManager like this:

$resourceUri = $this->resourceManager->getPublicPackageResourceUri('Acme.Demo', 'Images/Icons/FooIcon.png');

The same can be done in Fluid templates by using the the built-in resource ViewHelper:

Note that the package parameter is optional and defaults to the
package containing the currently active controller.

Warning

Although it might be a tempting shortcut, never refer to the resource files directly
through a URL like _Resources/Static/Packages/Acme.Demo/Images/Icons/FooIcon.png
because you can’t really rely on this path. Always use the resource view helper
instead.

Persistent Resources

Persistent resources are published on creation to the configured Target. To get the URI for it
you can rely on the ResourceManager and use the getPublicPersistentResourceUri method with
your resource object:

$resourceUri = $this->resourceManager->getPublicPersistentResourceUri($image->getOriginalResource());

Again in a Fluid template the resource ViewHelper generates the URI for you:

A persistent resource published to the default Target is accessible through a web URI like
http://example.local/_Resources/Persistent/107bed85ba5e9bae0edbae879bbc2c26d72033ab/your_filename.jpg.
One advantage of using the sha1 hash of the resource content as part of the path is that once the
resource changes it gets a new path and is displayed correctly regardless of the cache
settings in the user’s web browser.

If you need to access a resource`s data directly in your code you can aquire a stream via the getStream()
method of the PersistentResource. If a stream is not enough and you need a file path to work with
the createTemporaryLocalCopy() will return one for you.

Warning

The file in the path returned by createTemporaryLocalCopy() is just valid for the current
request and also just for reading. You should neither delete nor write to this temporary file.
Also don’t store this path.

Resource Stream Wrapper

Static resources are often used by packages internally. Typical use cases are templates,
XML, YAML or other data files and images for further processing. You might be tempted to
refer to these files by using one of the FLOW_PATH_* constants or by creating a path
relative to your package. A much better and more convenient way is using Flow’s built-in
package resources stream wrapper.

The following example reads the content of the file
Acme.Demo/Resources/Private/Templates/SomeTemplate.html into a variable:

Example: Accessing static resources

$template = file_get_contents(
 'resource://Acme.Demo/Private/Templates/SomeTemplate.html'
);

Some situations might require access to persistent resources. The resource stream wrapper also supports
this. To use this feature, just pass the resource hash:

Example: Accessing persisted resources

$imageFile = file_get_contents('resource://' . $resource->getSha1());

You are encouraged to use this stream wrapper wherever you need to access a static or
persistent resource in your PHP code.

Publishing to a Content Delivery Network (CDN)

Flow can publish resources to Content Delivery Networks or other remote services by using specialized connectors.

First you need to install your desired connector (a third-party package which usually can be obtained through
packagist.org9 configure it according to its documentation (provide correct credentials etc).

Once the connector package is in place, you add a new publishing target which uses that connect and assign this target
to your collection.

Neos:
 Flow:
 resource:
 collections:
 persistent:
 target: 'cloudFrontPersistentResourcesTarget'
 targets:
 cloudFrontPersistentResourcesTarget:
 target: 'Flownative\Aws\S3\S3Target'
 targetOptions:
 bucket: 'media.example.com'
 keyPrefix: '/'
 baseUri: 'https://abc123def456.cloudfront.net/'

Since the new publishing target will be empty initially, you need to publish your assets to the new target by using
the resource:publish command:

path$./flow resource:publish

This command will upload your files to the target and use the calculated remote URL for all your assets from now on.

Switching the storage of a collection (move to CDN)

If you want to migrate from your default local filesystem storage to a remote storage, you need to copy
all your existing persistent resources to that new storage and use that storage afterwards by default.

You start by adding a new storage with the desired driver that connects the resource management to your CDN.
As you might want also want to serve your assets by the remote storage system, you also add a target that
contains your published resources (as with local storage this can’t be the same as the storage).

Neos:
 Flow:
 resource:
 storages:
 s3PersistentResourcesStorage:
 storage: 'Flownative\Aws\S3\S3Storage'
 storageOptions:
 bucket: 'storage.example.com'
 keyPrefix: 'my/assets/'
 targets:
 s3PersistentResourcesTarget:
 target: 'Flownative\Aws\S3\S3Target'
 targetOptions:
 bucket: 'media.example.com'
 keyPrefix: '/'
 baseUri: 'https://abc123def456.cloudfront.net/'

In order to copy the resources to the new storage we need a temporary collection that uses the storage and the new
publication target.

Neos:
 Flow:
 resource:
 collections:
 tmpNewCollection:
 storage: 's3PersistentResourcesStorage'
 target: 's3PersistentResourcesTarget'

Now you can use the resource:copy command:

path$./flow resource:copy --publish persistent tmpNewCollection

This will copy all your files from your current storage (local filesystem) to the new remote storage.
The --publish flag means that this command also publishes all the resources to the new target, and you have the
same state on your current storage and publication target as on the new one.

Now you can overwrite your old collection configuration and remove the temporary one:

Neos:
 Flow:
 resource:
 collections:
 persistent:
 storage: 's3PersistentResourcesStorage'
 target: 's3PersistentResourcesTarget'

Clear caches and you’re done.

Routing

As explained in the Model View Controller chapter, in Flow the dispatcher passes the
request to a controller which then calls the respective action. But how to tell, what
controller of what package is the right one for the current request? This is were the
Routing Framework comes into play.

The Router

The request builder asks the router for the correct package, controller and action. For
this it passes the current request to the routers route() method. The router then
iterates through all configured routes and invokes their matches() method. The first
route that matches, determines which action will be called with what parameters.

The same works for the opposite direction: If a link is generated the routers resolve()
method calls the resolve() method of all routes until one route can return the correct
URI for the specified arguments.

Note

If no matching route can be found, a NotFoundException is thrown which
results in a 404 status code for the HTTP response and an error page being
displayed. In Development context that error page contains some more details
about the error that occurred.

Routes

A route describes the way from your browser to the controller - and back.

With the uriPattern you can define how a route is represented in the browser’s address
bar. By setting defaults you can specify package, controller and action that should
apply when a request matches the route. Besides you can set arbitrary default values that
will be available in your controller. They are called defaults because you can overwrite
them by so called dynamic route parts.

But let’s start with an easy example:

Example: Simple route - Routes.yaml

-
 name: 'Homepage'
 uriPattern: ''
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Standard'
 '@action': 'index'

Note

name is optional, but it’s recommended to set a name for all routes to make debugging
easier.

If you insert these lines at the beginning of the file Configurations/Routes.yaml,
the indexAction of the StandardController in your My.Demo package will be called
when you open up the homepage of your Flow installation (http://localhost/).

URI patterns

The URI pattern defines the appearance of the URI. In a simple setup the pattern only
consists of static route parts and is equal to the actual URI (without protocol and
host).

In order to reduce the amount of routes that have to be created, you are allowed to insert
markers, so called dynamic route parts, that will be replaced by the Routing Framework.
You can even mark route parts optional.

But first things first.

Static route parts

A static route part is really simple - it will be mapped one-to-one to the resulting URI
without transformation.

Let’s create a route that calls the listAction of the ProductController when browsing to
http://localhost/my/demo:

Example: Simple route with static route parts Configuration/Routes.yaml

-
 name: 'Static demo route'
 uriPattern: 'my/demo'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'list'

Dynamic route parts

Dynamic route parts are enclosed in curly brackets and define parts of the URI that are
not fixed.

Let’s add some dynamics to the previous example:

Example: Simple route with static and dynamic route parts - Configuration/Routes.yaml

-
 name: 'Dynamic demo route'
 uriPattern: 'my/demo/{@action}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'

Now http://localhost/my/demo/list calls the listAction just like in the previous
example.

With http://localhost/my/demo/new you’d invoke the newAction and so on.

Note

It’s not allowed to have successive dynamic route parts in the URI pattern because it
wouldn’t be possible to determine the end of the first dynamic route part then.

The @ prefix should reveal that action has a special meaning here. Other predefined keys
are @package, @subpackage, @controller and @format. But you can use dynamic route parts to
set any kind of arguments:

Example: dynamic parameters - Configuration/Routes.yaml

-
 name: 'Dynamic demo route with parameter'
 uriPattern: 'products/list/{sortOrder}.{@format}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'list'

Browsing to http://localhost/products/list/descending.xml will then call the listAction in
your Product controller and the request argument sortOrder has the value of
descending.

By default, dynamic route parts match any simple type and convert it to a string that is available through
the corresponding request argument. Read on to learn how you can use objects in your routes.

Object Route Parts

If a route part refers to an object, that is known to the Persistence Manager, it will be converted to
its technical identifier (usually the UUID) automatically:

Example: object parameters - Configuration/Routes.yaml

-
 name: 'Single product route'
 uriPattern: 'products/{product}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'show'

If you add this route above the previously generated dynamic routes, an URI pointing to the show action of
the ProductController will look like http://localhost/products/afb275ed-f4a3-49ab-9f2f-1adff12c674f.

Probably you prefer more human readable URIs and you get them by specifying the object type:

-
 name: 'Single product route'
 uriPattern: 'products/{product}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'show'
 routeParts:
 product:
 objectType: 'My\Demo\Domain\Model\Product'

This will use the identity properties of the specified model to generate the URI representation of the product.

Note

If the model contains no identity, the technical identifier is used!

Try adding the @Flow\Identity annotation to the name property of the product model.
The resulting URI will be http://localhost/products/the-product-name

Note

The result will be transliterated, so that it does not contain invalid characters

Alternatively you can override the behavior by specifying an uriPattern for the object route part:

-
 name: 'Single product route'
 uriPattern: 'products/{product}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'show'
 routeParts:
 product:
 objectType: 'My\Demo\Domain\Model\Product'
 uriPattern: '{category.title}/{name}'

This will add the title of the product category to the resulting URI:
http://localhost/products/product-category/the-product-name
The route part URI pattern can contain all properties of the object or it’s relations.

Note

For properties of type \DateTime you can define the date format by appending a PHP
date format string separated by colon: {creationDate:m-Y}. If no format is specified,
the default of Y-m-d is used.

Note

If an uriPattern is set or the objectType contains identity properties, mappings from an object to it’s
URI representation are stored in the ObjectPathMappingRepository in order to make sure that existing links
work even after a property has changed!
This mapping is not required if no uriPattern is set because in this case the mapping is ubiquitous.

Internally the above is handled by the so called IdentityRoutePart that gives you a lot of power and flexibility
when working with entities. If you have more specialized requirements or want to use routing for objects that are not
known to the Persistence Manager, you can create your custom route part handlers, as described below.

Route Part Handlers

Route part handlers are classes that implement
Neos\Flow\Mvc\Routing\DynamicRoutePartInterface. But for most cases it will be
sufficient to extend Neos\Flow\Mvc\Routing\DynamicRoutePart and overwrite the
methods matchValue and resolveValue.

Let’s have a look at a (very simple) route part handler that allows you to match values against
configurable regular expressions:

Example: RegexRoutePartHandler.php

class RegexRoutePartHandler extends \Neos\Flow\Mvc\Routing\DynamicRoutePart {

 /**
 * Checks whether the current URI section matches the configured RegEx pattern.
 *
 * @param string $requestPath value to match, the string to be checked
 * @return boolean TRUE if value could be matched successfully, otherwise FALSE.
 */
 protected function matchValue($requestPath) {
 if (!preg_match($this->options['pattern'], $requestPath, $matches)) {
 return false;
 }
 $this->value = array_shift($matches);
 return true;
 }

 /**
 * Checks whether the route part matches the configured RegEx pattern.
 *
 * @param string $value The route part (must be a string)
 * @return boolean TRUE if value could be resolved successfully, otherwise FALSE.
 */
 protected function resolveValue($value) {
 if (!is_string($value) || !preg_match($this->options['pattern'], $value, $matches)) {
 return false;
 }
 $this->value = array_shift($matches);
 return true;
 }

}

The corresponding route might look like this:

Example: Route with route part handlers Configuration/Routes.yaml

-
 name: 'RegEx route - only matches index & list actions'
 uriPattern: 'blogs/{blog}/{@action}'
 defaults:
 '@package': 'My.Blog'
 '@controller': 'Blog'
 routeParts:
 '@action':
 handler: 'My\Blog\RoutePartHandlers\RegexRoutePartHandler'
 options:
 pattern: '/index|list/'

The method matchValue() is called when translating from an URL to a request argument,
and the method resolveValue() needs to return an URL segment when being passed a value.

Note

For performance reasons the routing is cached. See Caching on how to disable that
during development.

Warning

Some examples are missing here, which should explain the API better.

Optional route parts

By putting one or more route parts in round brackets you mark them optional. The following
route matches http://localhost/my/demo and http://localhost/my/demo/list.html.

Example: Route with optional route parts - Configuration/Routes.yaml

-
 name: 'Dynamic demo route'
 uriPattern: 'my/demo(/{@action}.html)'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'list'

Note

http://localhost/my/demo/list won’t match here, because either all optional parts
have to match - or none.

Note

You have to define default values for all optional dynamic route parts.

Case Sensitivity

By Default URIs are lower-cased. The following example with a
username of “Kasper” will result in http://localhost/users/kasper

Example: Route with default case handling

-
 uriPattern: 'Users/{username}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'show'

You can change this behavior for routes and/or dynamic route parts:

Example: Route with customised case handling

-
 uriPattern: 'Users/{username}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'show'
 toLowerCase: false
 routeParts:
 username:
 toLowerCase: true

The option toLowerCase will change the default behavior for this route
and reset it for the username route part.
Given the same username of “Kasper” the resulting URI will now be
http://localhost/Users/kasper (note the lower case “k” in “kasper”).

Note

The predefined route parts @package, @subpackage, @controller, @action and
@format are an exception, they’re always lower cased!

Matching of incoming URIs to static route parts is always done case sensitive. So “users/kasper” won’t match.
For dynamic route parts the case is usually not defined. If you want to handle data coming in through dynamic
route parts case-sensitive, you need to handle that in your own code.

Exceeding Arguments

By default arguments that are not part of the configured route values are not
appended to the resulting URI as query string.

If you need this behavior, you have to explicitly enable this by setting
appendExceedingArguments:

-
 uriPattern: 'foo/{dynamic}'
 defaults:
 '@package': 'Acme.Demo'
 '@controller': 'Standard'
 '@action': 'index'
 appendExceedingArguments: true

Now route values that are neither defined in the uriPattern nor specified in the defaults will be
appended to the resulting URI: http://localhost/foo/dynamicValue?someOtherArgument=argumentValue

This setting is mostly useful for fallback routes and it is enabled for the default action route provided
with Flow, so that most links will work out of the box.

Note

The setting appendExceedingArguments is only relevant for creating URIs (resolve).
While matching an incoming request to a route, this has no effect. Nevertheless, all query parameters
will be available in the resulting action request via $actionRequest::getArguments().

Request Methods

Usually the Routing Framework does not care whether it handles a GET or POST request and just looks at the request path.
However in some cases it makes sense to restrict a route to certain HTTP methods. This is especially true for REST APIs
where you often need the same URI to invoke different actions depending on the HTTP method.

This can be achieved with a setting httpMethods, which accepts an array of HTTP verbs:

-
 uriPattern: 'some/path'
 defaults:
 '@package': 'Acme.Demo'
 '@controller': 'Standard'
 '@action': 'action1'
 httpMethods: ['GET']
-
 uriPattern: 'some/path'
 defaults:
 '@package': 'Acme.Demo'
 '@controller': 'Standard'
 '@action': 'action2'
 httpMethods: ['POST', 'PUT']

Given the above routes a GET request to http://localhost/some/path would invoke the action1Action() while
POST and PUT requests to the same URI would call action2Action().

Note

The setting httpMethods is only relevant for matching URIs.
While resolving route values to an URI, this setting has no effect.

Subroutes

Flow supports what we call SubRoutes enabling you to provide custom routes with your package and
reference them in the global routing setup.

Imagine following routes in the Routes.yaml file inside your demo package:

Example: Demo Subroutes - My.Demo/Configuration/Routes.yaml

-
 name: 'Product routes'
 uriPattern: 'products/{@action}'
 defaults:
 '@controller': 'Product'

-
 name: 'Standard routes'
 uriPattern: '{@action}'
 defaults:
 '@controller': 'Standard'

And in your global Routes.yaml:

Example: Referencing SubRoutes - Configuration/Routes.yaml

-
 name: 'Demo SubRoutes'
 uriPattern: 'demo/<DemoSubroutes>(.{@format})'
 defaults:
 '@package': 'My.Demo'
 '@format': 'html'
 subRoutes:
 'DemoSubroutes':
 package: 'My.Demo'

As you can see, you can reference SubRoutes by putting parts of the URI pattern in angle
brackets (like <subRoutes>). With the subRoutes setting you specify where to load the
SubRoutes from.

Instead of adjusting the global Routes.yaml you can also include sub routes via Settings.yaml - see Subroutes from Settings.

Internally the ConfigurationManager merges together the main route with its SubRoutes, resulting
in the following routing configuration:

Example: Merged routing configuration

-
 name: 'Demo SubRoutes :: Product routes'
 uriPattern: 'demo/products/{@action}.{@format}'
 defaults:
 '@package': 'My.Demo'
 '@format': 'html'
 '@controller': 'Product'

-
 name: 'Demo SubRoutes :: Standard routes'
 uriPattern: 'demo/{@action}.{@format}'
 defaults:
 '@package': 'My.Demo'
 '@format': 'html'
 '@controller': 'Standard'

You can even reference multiple SubRoutes from one route - that will create one route for
all possible combinations.

Nested Subroutes

By default a SubRoute is loaded from the Routes.yaml file of the referred package but it is
possible to load SubRoutes from a different file by specifying a suffix:

-
 name: 'Demo SubRoutes'
 uriPattern: 'demo/<DemoSubroutes>'
 subRoutes:
 'DemoSubroutes':
 package: 'My.Demo'
 suffix: 'Foo'

This will load the SubRoutes from a file Routes.Foo.yaml in the My.Demo package.
With that feature you can include multiple Routes with your package (for example providing different URI styles).
Furthermore you can nest routes in order to minimize duplication in your configuration. You nest SubRoutes by including
different SubRoutes from within a SubRoute, using the same syntax as before.
Additionally you can specify a set of variables that will be replaced in name, uriPattern and defaults
of merged routes:

Imagine the following setup:

global Routes.yaml (Configuration/Routes.yaml):

-
 name: 'My Package'
 uriPattern: '<MyPackageSubroutes>'
 subRoutes:
 'MyPackageSubroutes':
 package: 'My.Package'

default package Routes.yaml (My.Package/Configuration/Routes.yaml):

-
 name: 'Product'
 uriPattern: 'products/<EntitySubroutes>'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Product'
 subRoutes:
 'EntitySubroutes':
 package: 'My.Package'
 suffix: 'Entity'
 variables:
 'entityName': 'product'

-
 name: 'Category'
 uriPattern: 'categories/<EntitySubroutes>'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Category'
 subRoutes:
 'EntitySubroutes':
 package: 'My.Package'
 suffix: 'Entity'
 variables:
 'entityName': 'category'

And in ``My.Package/Configuration/Routes.Entity.yaml``:

-
 name: '<entityName> list view'
 uriPattern: ''
 defaults:
 '@action': 'index'

-
 name: '<entityName> detail view'
 uriPattern: '{<entityName>}'
 defaults:
 '@action': 'show'

-
 name: '<entityName> edit view'
 uriPattern: '{<entityName>}/edit'
 defaults:
 '@action': 'edit'

This will result in a merged configuration like this:

-
 name: 'My Package :: Product :: product list view'
 uriPattern: 'products'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Product'
 '@action': 'index'

-
 name: 'My Package :: Product :: product detail view'
 uriPattern: 'products/{product}'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Product'
 '@action': 'show'

-
 name: 'My Package :: Product :: product edit view'
 uriPattern: 'products/{product}/edit'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Product'
 '@action': 'edit'

-
 name: 'My Package :: Category :: category list view'
 uriPattern: 'categories'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Category'
 '@action': 'index'

-
 name: 'My Package :: Category :: category detail view'
 uriPattern: 'categories/{category}'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Category'
 '@action': 'show'

-
 name: 'My Package :: Category :: category edit view'
 uriPattern: 'categories/{category}/edit'
 defaults:
 '@package': 'My.Package'
 '@controller': 'Category'
 '@action': 'edit'

Subroutes from Settings

Having to adjust the main Routes.yaml whenever you want to include SubRoutes can be cumbersome and error prone,
especially when working with 3rd party packages that come with their own routes.
Therefore Flow allows you to include SubRoutes via settings, too:

Settings.yaml (Configuration/Settings.yaml):

Neos:
 Flow:
 mvc:
 routes:
 'Some.Package': TRUE

This will include all routes from the main Routes.yaml file of the Some.Package (and all its nested SubRoutes
if it defines any).

You can also adjust the position of the included SubRoutes:

Neos:
 Flow:
 mvc:
 routes:
 'Some.Package':
 position: 'start'

Internally Flow uses the PositionalArraySorter to resolve the order of SubRoutes loaded from Settings.
Following values are supported for the position option:

	start (<weight>)

	end (<weight>)

	before <key> (<weight>)

	after <key> (<weight>)

	<numerical-order>

<weight> defines the priority in case of conflicting configurations. <key> refers to another package key allowing
you to set order depending on other SubRoutes.

Note

SubRoutes that are loaded via Settings will always be appended after Routes loaded via Routes.yaml
Therefore you should consider getting rid of the main Routes.yaml and only use settings to include routes
for greater flexibility.

It’s not possible to adjust route defaults or the UriPattern when including SubRoutes via Settings, but there are
two more options you can use:

Neos:
 Flow:
 mvc:
 routes:
 'Some.Package':
 suffix: 'Backend'
 variables:
 'variable1': 'some value'
 'variable2': 'some other value'

With suffix you can specify a custom filename suffix for the SubRoute. The variables option allows you to
specify placeholders in the SubRoutes (see Nested Subroutes).

Tip

You can use the flow:routing:list command to list all routes which are currently active:

$./flow routing:list

Currently registered routes:
neos/login(/{@action}.{@format}) Neos :: Authentication
neos/logout Neos :: Logout
neos/setup(/{@action}) Neos :: Setup
neos Neos :: Backend Overview
neos/content/{@action} Neos :: Backend - Content Module
{node}.html/{type} Neos :: Frontend content with format and type
{node}.html Neos :: Frontend content with (HTML) format
({node}) Neos :: Frontend content without a specified format
 Neos :: Fallback rule – for when no site has been defined yet

Route Loading Order and the Flow Application Context

	routes inside more specific contexts are loaded first

	and after that, global ones, so you can specify context-specific routes

Caching

For performance reasons the routing is cached by default.
During development of route part handlers it can be useful to disable the routing cache temporarily.
You can do so by using the following configuration in your Caches.yaml:

Flow_Mvc_Routing_Route:
 backend: Neos\Cache\Backend\NullBackend
Flow_Mvc_Routing_Resolve:
 backend: Neos\Cache\Backend\NullBackend

Also it can be handy to be able to flush caches for certain routes programmatically so that they can be
regenerated. This is useful for example to update all related routes when an entity was renamed.
The RouterCachingService allows flushing of all route caches via the flushCaches() method.
Individual routes can be removed from the cache with the flushCachesByTag() method.

Tagging

Any UUID string (see UuidValidator::PATTERN_MATCH_UUID) in the route values (when resolving URIs) and the
match values (when matching incoming requests) will be added to the cache entries automatically
as well as an md5 hash of all URI path segments for matched and resolved routes.

Custom route part handlers can register additional tags to be associated with a route by returning an instance of
MatchResult / ResolveResult instead of true/false:

Example before: SomePartHandler.php

use Neos\Flow\Mvc\Routing\DynamicRoutePart;

class SomePartHandler extends DynamicRoutePart {

 protected function matchValue($requestPath) {
 // custom logic, returning FALSE if the $requestPath doesn't match
 $this->value = $matchedValue;
 return true;
 }

 protected function resolveValue($value) {
 // custom logic, returning FALSE if the $value doesn't resolve
 $this->value = $resolvedPathSegment;
 return true;
 }

}

Example now: SomePartHandler.php

use Neos\Flow\Mvc\Routing\Dto\MatchResult;
use Neos\Flow\Mvc\Routing\Dto\ResolveResult;
use Neos\Flow\Mvc\Routing\Dto\RouteTags;
use Neos\Flow\Mvc\Routing\DynamicRoutePart;

class SomePartHandler extends DynamicRoutePart {

 protected function matchValue($requestPath) {
 // custom logic, returning FALSE if the $requestPath doesn't match, as before
 return new MatchResult($matchedValue, RouteTags::createFromTag('some-tag'));
 }

 protected function resolveValue($value) {
 // custom logic, returning FALSE if the $value doesn't resolve, as before
 return new ResolveResult($resolvedPathSegment, null, RouteTags::createFromTag('some-tag'));
 }

}

All cache entries for routes using the above route part handler will be tagged with some-tag and
could be flushed with $routerCachingService->flushCachesByTag('some-tag');.

URI Constraints

Most route parts only affect the path when resolving URIs.
Sometimes it can be useful for route parts to affect other parts of the resolved URI. For example there could
be routes enforcing https URIs, a specific HTTP port or global domain and path pre/suffixes.

In the last code example above the ResolveResult was constructed with the second argument being null.
This argument allows route part handlers to specify UriConstraints that can pre-set the following attributes
of the resulting URI:

	Scheme (for example “https”)

	Host (for example “www.somedomain.tld”)

	Host prefix (for example “en.”)

	Host suffix (for example “co.uk”)

	Port (for example 443)

	Path (for example “some/path”)

	Path prefix (for example “en/”)

	Path suffix (for example “.html”)

Let’s have a look at another simple route part handler that allows you to enforce https URLs:

Example: HttpsRoutePart.php

use Neos\Flow\Mvc\Routing\Dto\ResolveResult;
use Neos\Flow\Mvc\Routing\Dto\UriConstraints;
use Neos\Flow\Mvc\Routing\DynamicRoutePart;

class HttpsRoutePart extends DynamicRoutePart
{
 protected function resolveValue($value)
 {
 return new ResolveResult('', UriConstraints::create()->withScheme('https'));
 }

}

If a corresponding route is configured, like:

Example: Routes.yaml

-
 name: 'Secure route'
 uriPattern: '{https}'
 defaults:
 '@package': 'My.Demo'
 '@controller': 'Product'
 '@action': 'secure'
 routeParts:
 'https':
 handler: 'My\Demo\HttpsRoutePart'

All URIs pointing to the respective action will be forced to be https:// URIs.

As you can see, in this example the route part handler doesn’t affect the URI path at all, so with the configured route
this will always point to the homepage. But of course route parts can specify a path (segment) and UriConstraints at the
same time.

Routing Parameters

The last example only carse about URI resolving. What if a route should react to conditions that are not extractable
from the request URI path? For example the counter-part to the example above, matching only https:// URIs?

Warning

One could be tempted to access the current request from within the route part handler using Dependency
Injection. But remember that routes are cached and that route part handlers won’t be invoked again once a
corresponding cache entry exists.

For route part handlers to safely access values that are not encoded in the URI path, those values have to be registered
as Routing Parameters, usually via a HTTP Component (see respective chapter about HTTP Foundation).

A HTTP Component that registers the current request scheme as Routing Parameter could look like this:

Example: HttpsRoutePart.php

use Neos\Flow\Http\Component\ComponentContext;
use Neos\Flow\Http\Component\ComponentInterface;
use Neos\Flow\Mvc\Routing\Dto\RouteParameters;
use Neos\Flow\Mvc\Routing\RoutingComponent;

class SchemeRoutingParameterComponent implements ComponentInterface
{

 public function handle(ComponentContext $componentContext)
 {
 $existingParameters = $componentContext->getParameter(RoutingComponent::class, 'parameters');
 if ($existingParameters === null) {
 $existingParameters = RouteParameters::createEmpty();
 }
 $parameters = $existingParameters->withParameter('scheme', $componentContext->getHttpRequest()->getUri()->getScheme());
 $componentContext->setParameter(RoutingComponent::class, 'parameters', $parameters);
 }
}

Now we can extend the HttpRoutePart to only match https:// requests:

Example: HttpsRoutePart.php

use Neos\Flow\Mvc\Routing\Dto\ResolveResult;
use Neos\Flow\Mvc\Routing\Dto\UriConstraints;
use Neos\Flow\Mvc\Routing\DynamicRoutePart;

class HttpsRoutePart extends DynamicRoutePart
{
 protected function matchValue($value)
 {
 if ($this->parameters->getValue('scheme') !== 'https') {
 return false;
 }
 return true;
 }

 protected function resolveValue($value)
 {
 return new ResolveResult('', UriConstraints::create()->withScheme('https'));
 }

}

Note

For route part handlers to be able to access the Routing Parameters they have to implement the ParameterAwareRoutePartInterface
and its matchWithParameters() method. The DynamicRoutePart already implements the interface and makes parameters
available in the parameters field.

Cache Framework

Flow offers a caching framework to cache data. The system offers a wide variety of
options and storage solutions for different caching needs. Each cache can be configured
individually and can implement its own specific storage strategy.

If configured correctly the caching framework can help to speed up installations,
especially in heavy load scenarios. This can be done by moving all caches to a dedicated
cache server with specialized cache systems like the Redis key-value store (a.k.a. NoSQL
database), or shrinking the needed storage space by enabling compression of data.

Introduction

The caching framework can handle multiple caches with different configurations. A single
cache consists of any number of cache entries. A single cache entry is defined by these
parts:

	identifier

	A string as unique identifier within this cache. Used to store and retrieve entries.

	data

	The data to be cached.

	lifetime

	A lifetime in seconds of this cache entry. The entry can not be retrieved from cache
if lifetime expired.

	tags

	Additional tags (an array of strings) assigned to the entry. Used to remove specific
cache entries.

The difference between identifier and tags is hard to understand at first glance, it is
illustrated with an example.

About the Identifier

The identifier used to store (“set”) and retrieve (“get”) entries from the cache holds all
information to differentiate entries from each other. For performance reasons, it should
be quick to calculate. Suppose there is an resource-intensive extension added as a plugin
on two different pages. The calculated content depends on the page on which it is inserted
and if a user is logged in or not.
So, the plugin creates at maximum four different content outputs, which can be cached in
four different cache entries:

	page 1, no user logged in

	page 1, a user is logged in

	page 2, no user logged in

	page 2, a user is logged in

To differentiate all entries from each other, the identifier is build from the page id
where the plugin is located, combined with the information whether a user is logged in.
These are concatenated and hashed (with sha1(), for example). In PHP this could look
like this:

$identifier = sha1((string)$this->getName() . (string)$this->isUserLoggedIn());

When the plugin is accessed, the identifier is calculated early in the program flow. Next,
the plugin looks up for a cache entry with this identifier. If there is such an entry, the
plugin can return the cached content, else it calculates the content and stores a new
cache entry with this identifier. In general the identifier is constructed from all
dependencies which specify an unique set of data. The identifier should be based on
information which already exist in the system at the point of its calculation. In the
above scenario the page id and whether or not a user is logged in are already determined
during the frontend bootstrap and can be retrieved from the system quickly.

About Tags

Tags are used to drop specific cache entries if the information an entry is constructed
from changes. Suppose the above plugin displays content based on different news entries.
If one news entry is changed in the backend, all cache entries which are compiled from
this news row must be dropped to ensure that the frontend renders the plugin content again
and does not deliver old content on the next frontend call. If for example the plugin uses
news number one and two on one page, and news one on another page, the according cache
entries should be tagged with these tags:

	page 1, tags news_1, news_2

	page 2, tag news_1

If entry two is changed, a simple backend logic could be created, which drops all cache
entries tagged with “news_2”, in this case the first entry would be invalidated while the
second entry still exists in the cache after the operation. While there is always exactly
one identifier for each cache entry, an arbitrary number of tags can be assigned to an
entry and one specific tag can be assigned to mulitple cache entries. All tags a cache
entry has are given to the cache when the entry is stored (set).

System Architecture

The caching framework architecture is based on these classes:

	Neos\Flow\Cache\CacheFactory

	Factory class to instantiate caches.

	Neos\Flow\Cache\CacheManager

	Returns the cache frontend of a specific cache. Implements methods to handle cache
instances.

	Neos\Cache\Frontend\FrontendInterface

	Interface to handle cache entries of a specific cache. Different frontends exist to
handle different data types.

	Neos\Cache\Backend\BackendInterface

	Interface for different storage strategies. A set of implementations exist with
different characteristics.

In your code you usually rely on dependency injection to have your caches injected.
Thus you deal mainly with the API defined in the FrontendInterface.

Configuration

The cache framework is configured in the usual Flow way through YAML files. The most
important is Caches.yaml, although you may of course use Objects.yaml to further
configure the way your caches are used. Caches are given a (unique) name and have three
keys in their configuration:

	frontend

	The frontend to use for the cache.

	backend

	The backend to use for the cache.

	backendOptions

	The backend options to use.

	persistent

	If the cache should stay persistent.

As an example for such a configuration take a look at the default that is inherited for
any cache unless overridden:

Example: Default cache settings

##
Default cache configuration
#
If no frontend, backend or options are specified for a cache, these values
will be taken to create the cache.
Default:
 frontend: Neos\Cache\Frontend\VariableFrontend
 backend: Neos\Cache\Backend\FileBackend
 backendOptions:
 defaultLifetime: 0

Some backends have mandatory as well as optional parameters (which are documented below).
If not all mandatory options are defined, the backend will throw an exception on the first
access. To override options for a cache, simply set them in Caches.yaml in your global
or package Configuration directory.

Example: Configuration to use RedisBackend for FooCache

FooCache:
 backend: Neos\Cache\Backend\RedisBackend
 backendOptions:
 database: 3

Persistent Cache

Caches can be marked as being “persistent” which lets the Cache Manager skip the cache while flushing all other
caches or flushing caches by tag. Persistent caches make for a versatile and easy to use low-level key-value-store.
Simple data like tokens, preferences or the like which usually would be stored in the file system, can be stored in
such a cache. Flow uses a persistent cache for storing an encryption key for the Hash Service. The configuration for
this cache looks like this:

Example: Persistent cache settings

##
Cache configuration for the HashService
#
If no frontend, backend or options are specified for a cache, these values
will be taken to create the cache.
Flow_Security_Cryptography_HashService:
 backend: Neos\Cache\Backend\SimpleFileBackend
 persistent: true

Note that, because the cache has been configured as “persistent”, the SimpleFileBackend will store its data in
Data/Persistent/Cache/Flow_Security_Cryptography_HashService/ instead of using the temporary directory
Data/Temporary/Production/Cache/Flow_Security_Cryptography_HashService/. You can override the cache directory
by specifying it in the cache’s backend options.

Application Identifier

The application identifier can be used by cache backends to differentiate cache entries with the same cache
identifier in the same storage from each other. For example memcache is global, so if you use it for multiple
installations or possibly just for different Flow contexts you need to find a way to separate entries from each
other. This setting will do that.

The default of %FLOW_PATH_ROOT%~%FLOW_APPLICATION_CONTEXT% is not well suited for installations in which the
FLOW_PATH_ROOT changes after each deployment, so in such cases you might want to exchange it for some hardcoded
value identifying each specific installation:

Neos:
 Flow:
 cache:
 applicationIdentifier: 'some-unique-system-identifier'

Note

Changing the identifier will make cache entries generated with the old identifier useless.

Cache Frontends

Frontend API

All frontends must implement the API defined in the interface
Neos\Cache\Frontend\FrontendInterface. All cache operations must be done
with these methods.

	getIdentifier()

	Returns the cache identifier.

	getBackend()

	Returns the backend instance of this cache. It is seldom needed in usual code.

	set()

	Sets/overwrites an entry in the cache.

	get()

	Return the cache entry for the given identifier.

	getByTag()

	Finds and returns all cache entries which are tagged by the specified tag.

	has()

	Check for existence of a cache entry.

	remove()

	Remove the entry for the given identifier from the cache.

	flush()

	Removes all cache entries of this cache.

	flushByTag()

	Flush all cache entries which are tagged with the given tag.

	collectGarbage()

	Call the garbage collection method of the backend. This is important for backends
which are unable to do this internally.

	isValidIdentifier()

	Checks if a given identifier is valid.

	isValidTag()

	Checks if a given tag is valid.

Check the API documentation for details on these methods.

Available Frontends

Currently three different frontends are implemented, the main difference is the data types
which can be stored using a specific frontend.

	Neos\Cache\Frontend\StringFrontend

	The string frontend accepts strings as data to be cached.

	Neos\Cache\Frontend\VariableFrontend

	Strings, arrays and objects are accepted by this frontend. Data is serialized before
it is given to the backend. The igbinary serializer is used transparently (if
available in the system) which speeds up the serialization and unserialization and
reduces data size. The variable frontend is the most frequently used frontend and
handles the widest range of data types. While it can also handle string data, the
string frontend should be used in this case to avoid the additional serialization done
by the variable frontend.

	Neos\Cache\Frontend\PhpFrontend

	This is a special frontend to cache PHP files. It extends the string frontend with the
method requireOnce() and allows PHP files to be require()’d if a cache entry
exists.

This can be used to cache and speed up loading of calculated PHP code and becomes handy
if a lot of reflection and dynamic PHP class construction is done. A backend to be used
with the PHP frontend must implement the

	Neos\Cache\Backend\PhpCapableBackendInterface

	Currently the file backend is the only backend which fulfills this requirement.

Note

The PHP frontend can only be used to cache PHP files, it does not work with strings,
arrays or objects.

Cache Backends

Currently already a number of different storage backends exists. They have different
characteristics and can be used for different caching needs. The best backend depends on
given server setup and hardware, as well as cache type and usage. A backend should be
chosen wisely, a wrong decision could slow down an installation in the end.

Common Options

Common cache backend options

	Options

	Description

	Mandatory

	Type

	Default

	defaultLifeTime

	Default lifetime in seconds of a
cache entry if it is
not specified for a specific entry
on set()

	No

	integer

	3600

Note

The SimpleFileBackend does not support lifetime for cache entries!

Neos\Cache\Backend\SimpleFileBackend

The simple file backend stores every cache entry as a single file to the file system.

By default, cache entries will be stored in a directory below Data/Temporary/{context}/Cache/.
For caches which are marked as persistent, the default directory is
Data/Persistent/Cache/. You may override each of the defaults by specifying the cacheDirectory
backend option (see below).

The simple file backend implements the PhpCapableInterface and can be used in
combination with the PhpFrontend. The backend was specifically adapted to these
needs and has low overhead for get and set operations, it scales very well with the
number of entries for those operations. This mostly depends on the file lookup
performance of the underlying file system in large directories, and most modern file
systems use B-trees which can easily handle millions of files without much performance
impact.

Note

The SimpleFileBackend is called like that, because it does not support lifetime for

cache entries! Nor does it support tagging cache entries!

Note

Under heavy load the maximum set() performance depends on the maximum write and
seek performance of the hard disk. If for example the server system shows lots of I/O
wait in top, the file backend has reached this bound. A different storage strategy
like RAM disks, battery backed up RAID systems or SSD hard disks might help then.

Note

The SimpleFileBackend and FileBackend are the only cache backends that are capable of
storing the Flow_Object_Classes Cache.

Options

Simple file cache backend options

	Option

	Description

	Mandatory

	Type

	Default

	cacheDirectory

	Full path leading to a custom cache
directory.

Example:

	/tmp/my-cache-directory/

	No

	string

	

	defaultLifeTime

	Cache entry lifetime is not
supported in this backend. Entries
never expire!

	No

	
	

Neos\Cache\Backend\FileBackend

The file backend stores every cache entry as a single file to the file system. The
lifetime and tags are added after the data part in the same file.

By default, cache entries will be stored in a directory below Data/Temporary/{context}/Cache/.
For caches which are marked as persistent, the default directory is
Data/Persistent/Cache/. You may override each of the defaults by specifying the cacheDirectory
backend option (see below).

The file backend implements the PhpCapableInterface and can be used in combination
with the PhpFrontend. The backend was specifically adapted to these needs and has
low overhead for get and set operations, it scales very well with the number of entries
for those operations. This mostly depends on the file lookup performance of the underlying
file system in large directories, and most modern file systems use B-trees which can
easily handle millions of files without much performance impact.

A disadvantage is that the performance of flushByTag() is bad and scales just O(n).
This basically means that with twice the number of entries the file backend needs double
time to flush entries which are tagged with a given tag.
This practically renders the file backend unusable for content caches. The reason for this
design decision in Flow is that the file backend is mainly used as AOP cache, where
flushByTag() is only used if a PHP file changes. This happens very seldom on
production systems, so get and set performance is much more important in this scenario.

Note

The SimpleFileBackend and FileBackend are the only cache backends that are capable of
storing the Flow_Object_Classes Cache.

Options

File cache backend options

	Option

	Description

	Mandatory

	Type

	Default

	cacheDirectory

	Full path leading to a custom cache
directory.

Example:

	/tmp/my-cache-directory/

	No

	string

	

Neos\Cache\Backend\PdoBackend

The PDO backend can be used as a native PDO interface to databases which are connected to
PHP via PDO. The garbage collection is implemented for this backend and should be called
to clean up hard disk space or memory.

Note

There is currently very little production experience with this backend, especially
not with a capable database like Oracle. We appreciate any feedback for real life use
cases of this cache.

Note

When not using SQLite, you have to create the needed caching tables manually.
The table definition (as used automatically for SQLite) can be found in the
file Neos.Flow/Resources/Private/Cache/SQL/DDL.sql. It works unchanged for
MySQL, for other RDBMS you might need to adjust the DDL manually.

Note

When not using SQLite the maximum length of each cache entry is restricted.
The default in Neos.Flow/Resources/Private/Cache/SQL/DDL.sql
is MEDIUMTEXT (16mb on MySQL), which should be sufficient in most cases.

Warning

This backend is php-capable. Nevertheless it cannot be used to store the proxy-classes
from the FLOW_Object_Classes Cache. It can be used for other code-caches like
Fluid_TemplateCache, Eel_Expression_Code or Flow_Aop_RuntimeExpressions.
This can be usefull in certain situations to avoid file operations on production
environments. If you want to use this backend for code-caching make sure that
allow_url_include is enabled in php.ini

Options

Pdo cache backend options

	Option

	Description

	Mandatory

	Type

	Default

	dataSourceName

	Data source name for connecting to the
database.

Examples:

	mysql:host=localhost;dbname=test

	sqlite:/path/to/sqlite.db

	sqlite::memory:

	Yes

	string

	

	username

	Username to use for the database
connection

	No

	
	

	password

	Password to use for the database
connection

	No

	
	

Neos\Cache\Backend\RedisBackend

Redis [http://redis.io/] is a key-value storage/database. In contrast to memcached, it allows structured
values.Data is stored in RAM but it allows persistence to disk and doesn’t suffer from the
design problems which exist with the memcached backend implementation. The redis backend
can be used as an alternative of the database backend for big cache tables and helps to
reduce load on database servers this way. The implementation can handle millions of cache
entries each with hundreds of tags if the underlying server has enough memory.

Redis is known to be extremely fast but very memory hungry. The implementation is an
option for big caches with lots of data because most important operations perform O(1) in
proportion to the number of keys. This basically means that the access to an entry in a
cache with a million entries is not slower than to a cache with only 10 entries, at least
if there is enough memory available to hold the complete set in memory. At the moment only
one redis server can be used at a time per cache, but one redis instance can handle
multiple caches without performance loss when flushing a single cache.

The garbage collection task should be run once in a while to find and delete old tags.

The implementation is based on the phpredis [https://github.com/owlient/phpredis] module, which must be available on the
system. It is recommended to build this from the git repository. Currently redis version
2.2 is recommended.

Note

It is important to monitor the redis server and tune its settings to the specific
caching needs and hardware capabilities. There are several articles on the net and the
redis configuration file contains some important hints on how to speed up the system
if it reaches bounds. A full documentation of available options is far beyond this
documentation.

Warning

The redis implementation is pretty young and should be considered as experimental. The
redis project itself has a very high development speed and it might happen that the
Flow implementation changes to adapt to new versions.

Warning

This backend is php-capable. Nevertheless it cannot be used to store the proxy-classes
from the FLOW_Object_Classes Cache. It can be used for other code-caches like
Fluid_TemplateCache, Eel_Expression_Code or Flow_Aop_RuntimeExpressions.
This can be usefull in certain situations to avoid file operations on production
environments. If you want to use this backend for code-caching make sure that
allow_url_include is enabled in php.ini

Options

Redis cache backend options

	Option

	Description

	Mandatory

	Type

	Default

	hostname

	IP address or name of redis
server to connect to

	No

	string

	127.0.0.1

	port

	Port of the Redis server.

	Yes

	integer

	6379

	database

	Number of the database to store
entries. Each cache should use
its own database, otherwise all
caches sharing a database are
flushed if the flush operation
is issued to one of them.
Database numbers 0 and 1 are
used and flushed by the core
unit tests and should not be
used if possible.

	No

	integer

	0

	password

	Password used to connect to the
redis instance if the redis
server needs authentication.
Warning: The password is sent
to the redis server in plain
text.

	No

	string

	

	compressionLevel

	Set gzip compression level to a
specific value.

	No

	integer
(0 to 9)

	0

Neos\Cache\Backend\MemcachedBackend

Memcached [http://memcached.org/] is a simple key/value RAM database which scales across multiple servers. To
use this backend, at least one memcache daemon must be reachable, and the PHP module
memcache must be loaded. There are two PHP memcache implementations: memcache and
memcached, only memcache is currently supported by this backend.

Warning and Design Constraints

Memcached is by design a simple key-value store. Values must be strings and there is no
relation between keys. Since the caching framework needs to put some structure in it to
store the identifier-data-tags relations, it stores, for each cache entry, an
identifier-to-data, an identifier-to-tags and a tag-to-identifiers entry.

This leads to structural problems:

	
	If memcache runs out of memory but must store new entries, it will toss some other

	entry out of the cache (this is called an eviction in memcached speak).

	
	If data is shared over multiple memcache servers and some server fails, key/value pairs

	on this system will just vanish from cache.

Both cases lead to corrupted caches: If, for example, a tags-to-identifier entry is lost,
dropByTag() will not be able to find the corresponding identifier-to-data entries
which should be removed and they will not be deleted. This results in old data delivered
by the cache. Additionally, there is currently no implementation of the garbage collection
which can rebuild cache integrity. It is thus important to monitor a memcached system for
evictions and server outages and to clear clear caches if that happens.

Furthermore memcache has no sort of namespacing. To distinguish entries of multiple caches
from each other, every entry is prefixed with the cache name. This can lead to very long
runtimes if a big cache needs to be flushed, because every entry has to be handled
separately and it is not possible to just truncate the whole cache with one call as this
would clear the whole memcached data which might even hold non Flow related entries.

Because of the mentioned drawbacks, the memcached backend should be used with care or in
situations where cache integrity is not important or if a cache has no need to use tags at
all.

Note

The current native debian squeeze package (probably other distributions are affected,
too) suffers from PHP memcache bug 16927 [https://bugs.php.net/bug.php?id=58943].

Note

Since memcached has no sort of namespacing and access control, this backend should not
be used if other third party systems do have access to the same memcached daemon for
security reasons. This is a typical problem in cloud deployments where access to
memcache is cheap (but could be read by third parties) and access to databases is
expensive.

Warning

This backend is php-capable. Nevertheless it cannot be used to store the proxy-classes
from the FLOW_Object_Classes Cache. It can be used for other code-caches like
Fluid_TemplateCache, Eel_Expression_Code or Flow_Aop_RuntimeExpressions.
This can be usefull in certain situations to avoid file operations on production
environments. If you want to use this backend for code-caching make sure that
allow_url_include is enabled in php.ini

Options

Memcached cache backend options

	Option

	Description

	Mandatory

	Type

	Default

	servers

	Array of used memcached servers, at

least one server must be defined. Each
server definition is a string, allowed
syntaxes:

	
	host

	TCP connect to host on memcached
default port (usually 11211, defined
by PHP ini
variable memcache.default_port

	
	host:port

	TCP connect to host on port

	
	tcp://hostname:port

	Same as above

	
	unix:///path/to/memcached.sock

	Connect to memcached server using
unix sockets

	Yes

	array

	

	compression

	Enable memcached internal data
compression. Can be used to reduce
memcached memory consumption but adds
additional compression / decompression
CPU overhead on the according memcached
servers.

	No

	boolean

	FALSE

Neos\Cache\Backend\ApcuBackend

APCu [http://php.net/manual/en/book.apcu.php] is also known as APC without opcode cache. It can be used to store user data.
As main advantage the data can be shared between different PHP processes and requests.
All calls are direct memory calls. This makes this backend lightning fast for get() and
set() operations. It can be an option for relatively small caches (few dozens of megabytes)
which are read and written very often.

The implementation is very similar to the memcached backend implementation and suffers
from the same problems if APCu runs out of memory.

Note

It is not advisable to use the APCu backend in shared hosting environments for security
reasons: The user cache in APCu is not aware of different virtual hosts. Basically
every PHP script which is executed on the system can read and write any data to this
shared cache, given data is not encapsulated or namespaced in any way. Only use the
APCu backend in environments which are completely under your control and where no third
party can read or tamper your data.

Warning

This backend is php-capable. Nevertheless it cannot be used to store the proxy-classes
from the Flow_Object_Classes Cache. It can be used for other code-caches like
Fluid_TemplateCache, Eel_Expression_Code or Flow_Aop_RuntimeExpressions.
This can be useful in certain situations to avoid file operations on production
environments. If you want to use this backend for code-caching make sure that
allow_url_include is enabled in php.ini

Options

The APCu backend has no options.

Neos\Cache\Backend\TransientMemoryBackend

The transient memory backend stores data in a local array. It is only valid for one
request. This becomes handy if code logic needs to do expensive calculations or must look
up identical information from a database over and over again during its execution. In this
case it is useful to store the data in an array once and just lookup the entry from the
cache for consecutive calls to get rid of the otherwise additional overhead. Since caches
are available system wide and shared between core and extensions they can profit from each
other if they need the same information.

Since the data is stored directly in memory, this backend is the quickest backend
available. The stored data adds to the memory consumed by the PHP process and can hit the
memory_limit PHP setting.

Options

The transient memory backend has no options.

Neos\Cache\Backend\NullBackend

The null backend is a dummy backend which doesn’t store any data and always returns
FALSE on get().

Options

The null backend has no options.

Neos\Cache\Backend\MultiBackend

This backend accepts several backend configurations
to be used in order of appareance as a fallback mechanismn
shoudl one of them not be available.
If backendConfigurations is an empty array this will act
just like the NullBackend.

Warning

Due to the nature of this backend as fallback it will swallow all
errors on creating and using the sub backends. So configuration
errors won’t show up. See debug option.

Options

Multi cache backend options

	Option

	Description

	Mandatory

	Type

	Default

	setInAllBackends

	Should values given to the backend be
replicated into all configured and

available backends?

Generally that is desireable for
fallback purposes, but to avoid too much
duplication at the cost of performance on
fallbacks this can be disabled.

	No

	bool

	true

	backendConfigurations

	A list of backends to be used in order
of appearance. Each entry in that list
should have the keys “backend” and
“backendOptions” just as a top level
backend configuration.

	Yes

	array

	[]

	debug

	Switch on debug mode which will throw
any errors happening in sub backends.
Use this in development to make sure
everything works as expected.

	No

	bool

	false

Neos\Cache\Backend\TaggableMultiBackend

Technically all the same as the MultiBackend above but implements the TaggableBackendInterface and
so supports tagging.

Options are the same as for the MultiBackend.

How to Use the Caching Framework

This section is targeted at developers who want to use caches for arbitrary needs. It is
only about proper initialization, not a discussion about identifier, tagging and lifetime
decisions that must be taken during development.

Register a Cache

To register a cache it must be configured in Caches.yaml of a package:

MyPackage_FooCache:
 frontend: Neos\Cache\Frontend\StringFrontend

In this case \Neos\Cache\Frontend\StringFrontend was chosen, but that depends
on individual needs. This setting is usually not changed by users. Any option not given is
inherited from the configuration of the “Default” cache. The name (MyPackage_FooCache
in this case) can be chosen freely, but keep possible name clashes in mind and adopt a
meaningful schema.

Retrieve and Use a Cache

Using dependency injection

A cache is usually retrieved through dependency injection, either constructor or setter
injection. Which is chosen depends on when you need the cache to be available. Keep in
mind that even if you seem to need a cache in the constructor, you could always make use
of initializeObject(). Here is an example for setter injection matching the
configuration given above. First you need to configure the injection in Objects.yaml:

MyCompany\MyPackage\SomeClass:
 properties:
 fooCache:
 object:
 factoryObjectName: Neos\Flow\Cache\CacheManager
 factoryMethodName: getCache
 arguments:
 1:
 value: MyPackage_FooCache

This configures what will be injected into the following setter:

/**
 * Sets the foo cache
 *
 * @param \Neos\Cache\Frontend\StringFrontend $cache Cache for foo data
 * @return void
 */
public function setFooCache(\Neos\Cache\Frontend\StringFrontend $cache) {
 $this->fooCache = $cache;
}

To make it even simpler you could omit the setter method and annotate the member with the
Inject annotations. The injected cache is fully initialized, all available frontend
operations like get(), set() and flushByTag() can be executed on $this->fooCache.

Using the CacheFactory

Of course you can also manually ask the CacheManager (have it injected for your
convenience) for a cache:

$this->fooCache = $this->cacheManager->getCache('MyPackage_FooCache');

Session Handling

Flow has excellent support for working with sessions.

This chapter will explain:

	… how to store specific data in a session

	… how to store objects in the session

Scope Session

Flow does not only support the prototype and singleton object scopes, but also the
object scope session. Objects marked like this basically behave like singleton objects
which are automatically serialized into the user’s session.

As an example, when building a shopping basket, the class could look as follows:

/**
 * @Flow\Scope("session")
 */
class ShoppingBasket {

 /**
 * @var array
 */
 protected $items = array();

 /**
 * @param string $item
 * @return void
 * @Flow\Session(autoStart = TRUE)
 */
 public function addItem($item) {
 $this->items[] = $item;
 }

 /**
 * @return array
 */
 public function getItems() {
 return $this->items;
 }
}

In the above example

	the object scope is set to session, so it behaves like a user-bound cross-request
singleton. This ShoppingBasket can now be injected where it is needed using Dependency
Injection.

	We only want to start a session when the first element is added to the shopping basket.
For this the addItem() method needs to be annotated with @Flow\Session(autoStart = TRUE).

When a user browses the website, the following then happens:

	First, the user’s shopping basket is empty, and getItems() returns an empty array.
No session exists yet. For each page being requested, the ShoppingBasket is
newly initialized.

	As soon as the user adds something to the shopping basket, addItem() is called.
Because this is annotated with @Flow\Session(autoStart = TRUE), a new PHP session
is started, and the ShoppingBasket is placed into the session.

	As the user continues to browse the website, the ShoppingBasket is being fetched
from the user’s session (which exists now). Thus, getItems() returns the items
from the session.

Why is @Flow\Session(autoStart = TRUE) necessary?

If Flow did not have this annotation, there would be no way for it to determine
when a session must be started. Thus, every user browsing the website would
always need a session as soon as an object of scope session is accessed.
This would happens if the session-scoped object is still in its initial state.

To be able to use proxies such as Varnish, Flow defers the creation of a
session to a point in time when it is really needed – and the developer needs
to tell the framework when that point is reached using the above annotation.

The Flow session scope handles persistent objects and dependency injection correctly:

	Objects which are injected via Dependency Injection are removed before serialization
and re-injected on deserialization.

	Persistent objects which are unchanged are just stored as a reference and fetched
from persistence again on deserialization.

	Persistent objects which are modified are fully stored in the session.

Low-level session handling

It is possible to inject the Neos\Flow\Session\SessionInterface and interact
with the session on a low level, by using start(), getData() and putData().

That should rarely be needed, though. Instead of manually serializing objects object into
the session, the session scope should be used whenever possible.

Session Backends

The session implementation of Flow is written in pure PHP and uses the caching
framework as its storage. This allows for storing session data in a variety of
backends, including PDO databases, APC and Redis.

The preferred storage backend for the built-in session is defined through a custom
Caches.yaml file, placed in a package or the global configuration directory:

Flow_Session_Storage:
 backend: Neos\Cache\Backend\RedisBackend

The built-in session implementation provides a few more configuration options, related to
the session cookie and the automatic garbage collection. Please refer to the
Settings.yaml file of the Flow package for a list of all possible options and
their respective documentation.

Command Line

Flow features a clean and powerful interface for the command line which allows
for automated and manual execution of low-level or application-specific tasks.
The command line support is available on all platforms generally supported by
Flow.

This chapter describes how to use the help system, how to run existing
commands and how to implement your own custom commands.

Wrapper Script

Flow uses two platform specific wrapper scripts for running the actual
commands:

	flow.bat is used on Windows machines

	flow is used on all other platforms

Both files are located and must be run from the main directory of the Flow
installation. The command and further options are passed as arguments to the
respective wrapper script.

In the following examples we refer to these wrapper scripts just as “the flow
script”.

Tip

If you are a Windows user and use a shell like msysGit [http://msysgit.github.io], you can mostly
follow the Unix style examples and use the flow script instead of
flow.bat.

Help System

Without specifying a command, the flow script responds by displaying
the current version number and the current context:

$./flow
Flow 2.x.x ("Development" context)
usage: ./flow <command identifier>

See "./flow help" for a list of all available commands.

In addition to the packages delivered with the Flow core, third-party packages
may provide any number of custom commands. A list of all currently available
commands can be obtained with the help command:

$./flow help
Flow 2.x.x ("Development" context)
usage: ./flow <command identifier>

The following commands are currently available:

PACKAGE "Neos.Flow":
--
* flow:cache:flush Flush all caches
 cache:warmup Warm up caches

 configuration:show Show the active configuration
 settings
 configuration:validate Validate the given configuration
 configuration:generateschema Generate a schema for the given
 configuration or YAML file.
...

A list of all commands in a specific package can be obtained by giving the
package key part of the command to the help command:

$./flow help kickstart
5 commands match the command identifier "neos.kickstart":

PACKAGE "Neos.KICKSTART":

kickstart:package Kickstart a new package
kickstart:actioncontroller Kickstart a new action controller
kickstart:commandcontroller Kickstart a new command controller
kickstart:model Kickstart a new domain model
kickstart:repository Kickstart a new domain repository

Further details about specific commands are available by specifying the
respective command identifier:

$./flow help configuration:show

Show the active configuration settings

COMMAND:
 neos.flow:configuration:show

USAGE:
 ./flow configuration:show [<options>]

OPTIONS:
 --type Configuration type to show
 --path path to subconfiguration separated by "." like
 "Neos.Flow

DESCRIPTION:
 The command shows the configuration of the current context as it is used by Flow itself.
 You can specify the configuration type and path if you want to show parts of the configuration.

 ./flow configuration:show --type Settings --path Neos.Flow.persistence

Running a Command

Commands are uniquely identified by their command identifier. These come in
two variants: a long and a short version.

Fully Qualified Command Identifier

A fully qualified command identifier is the combination of the package key, the
command controller name and the actual command name, separated by colons:

The command “warmup” implemented by the “CacheCommandController” contained
in the package “Neos.Flow” is referred to by the command identifier
neos.flow:cache:warmup.

Short Command Identifier

In order to save some typing, most commands can be referred to by a shortened
command identifier. The help command lists all commands by the shortest
possible identifier which is still unique across all available commands.

For example, the command “warmup” implemented by the “CacheCommandController”
contained in the package “Neos.Flow” can also be referred to by the command
identifier cache:warmup as long as no other package provides a command
with the same name.

Some special commands can only by referred to by their fully qualified
identifier because they are invoked at a very early stage when the command
resolution mechanism is not yet available. These Compile Time Commands are
marked by an asterisk in the list of available commands (see
Symfony/Console Methods for some background information).

Passing Arguments

Arguments and options can be specified for a command in the same manner they
are passed to typical Unix-like commands. A list of required arguments and
further options can be retrieved through the help command.

Options

Options listed for a command are optional and only have to be specified if
needed. Options must always be passed before any arguments by using their
respective name:

./flow foo:bar --some-option BAZ --some-argument QUUX

If an option expects a boolean type (that is, yes/no, true/false, on/off
would be typical states), just specifying the option name is sufficient
to set the option to true:

./flow foo:bar --force

Alternatively the boolean value can be specified explicitly:

./flow foo:bar --force TRUE
./flow foo:bar --force FALSE

Possible values equivalent to TRUE are: on, 1, y, yes, true.
Possible values equivalent to FALSE are: off, 0, n, no, false.

Arguments

The arguments listed for a command are mandatory. They can either be specified
by their name or without an argument name. If the argument name is omitted, the
argument values must be provided in the same order like in the help screen of
the respective command. The following two command lines are synonymic:

./flow kickstart:actioncontroller --force --package-key Foo.Bar --controller-name Baz
./flow kickstart:actioncontroller --force Foo.Bar Baz

Contexts

If not configured differently by the server environment, the flow script is
run in the Development context by default. It is recommended to set the
FLOW_CONTEXT environment variable to Production on a production server –
that way you don’t execute commands in an unintended context accidentally.

If you usually run the flow script in one context but need to call it in
another context occasionally, you can do so by temporarily setting the
respective environment variable for the single command run:

FLOW_CONTEXT=Production ./flow flow:cache:flush

In a Windows shell, you need to use the SET command:

SET FLOW_CONTEXT=Production
flow.bat flow:cache:flush

Implementing Custom Commands

A lot of effort has been made to make the implementation of custom commands a
breeze. Instead of writing configuration which registers commands or coming up
with files which provide the help screens, creating a new command is only a
matter of writing a simple PHP method.

A set of commands is bundled in a Command Controller. The individual commands
are plain PHP methods with a name that ends with the word “Command”. The concrete
command controller must be located in a “Command” namespace right below the
package’s namespace.

The following example illustrates all the code necessary to introduce a new
command:

namespace Acme\Demo\Command;
use Neos\Flow\Annotations as Flow;

/**
 * @Flow\Scope("singleton")
 */
class CoffeeCommandController extends \Neos\Flow\Cli\CommandController {

 /**
 * Brew some coffee
 *
 * This command brews the specified type and amount of coffee.
 *
 * Make sure to specify a type which best suits the kind of drink
 * you're aiming for. Some types are better suited for a Latte, while
 * others make a perfect Espresso.
 *
 * @param string $type The type of coffee
 * @param integer $shots The number of shots
 * @param boolean $ristretto Make this coffee a ristretto
 * @return string
 */
 public function brewCommand($type, $shots=1, $ristretto=FALSE) {
 # implementation
 }
}

The new controller and its command is detected automatically and the help screen
is rendered by using the information provided by the method code and DocComment:

	the first line of the DocComment contains the short description of the command

	the second line must be empty

	the the following lines contain the long description

	the descriptions of the @param annotations are used for the argument
descriptions

	the type specified in the @param annotations is used for validation and to
determine if the argument is a flag (boolean) or not

	the parameters declared in the method set the parameter names and tell if they
are arguments (mandatory) or options (optional). All arguments must be placed in front
of the options.

The above example will result in a help screen similar to this:

$./flow help coffee:brew

Brew some coffee

COMMAND:
 acme.demo:coffee:brew

USAGE:
 ./flow coffee:brew

DESCRIPTION:
 This command brews the specified type and amount of coffee.

 Make sure to specify a type which best suits the kind of drink
 you're aiming for. Some types are better suited for a Latte, while
 others make a perfect Espresso.

Handling Exceeding Arguments

Any arguments which are passed additionally to the mandatory arguments
are considered to be exceeding arguments. These arguments are not
parsed nor validated by Flow.

A command may use exceeding arguments in order to process an
variable amount of parameters. The exceeding arguments can be retrieved
through the Request object as in the following example:

/**
 * Process words
 *
 * This command processes the given words.
 *
 * @param string $operation The operation to execute
 * @return string
 */
public function processWordCommand($operation = 'uppercase') {
 $words = $this->request->getExceedingArguments();
 foreach ($words as $word) {
 ...
 }
 ...
}

A typical usage of the command above may look like this:

$./flow foo:processword --operation lowercase These Are The Words

these are the words

See Other and Deprecated Commands

A command’s help screen can contain additional information about relations
to other commands. This information is triggered by specifying one or more
@see annotations in the command’s doc comment block as follows:

/**
 * Drink juice
 *
 * This command provides some way of drinking juice.
 *
 * @return string
 * @see acme.demo:drink:coffee
 */
public function juiceCommand() {
 ...
}

By adding a @deprecated annotation, the respective command will be marked
as deprecated in all help screens and a warning will be displayed when
executing the command. If a @see annotation is specified, the deprecation
message additionally suggests to use the command mentioned there.

/**
 * Drink tea
 *
 * This command urges you to drink tea.
 *
 * @return string
 * @deprecated since 2.8.18
 * @see acme.demo:drink:coffee
 */
public function teaCommand() {
 ...
}

Generating Styled Output

The output sent to the user can be processed in three different ways,
each denoted by a PHP constant:

	OUTPUTFORMAT_RAW sends the output as is

	OUTPUTFORMAT_PLAIN tries to convert the output into plain text by
stripping possible tags

	OUTPUTFORMAT_STYLED sends the output as is but converts certain tags
into ANSI codes

The output format can be set by calling the setOutputFormat() method
on the command controller’s Response object:

/**
 * Example Command
 *
 * @return string
 */
public function exampleCommand() {
 $this->response->setOutputFormat(Response::OUTPUTFORMAT_RAW);
 $this->response->appendContent(...);
}

A limited number of tags are supported for brushing up the output in
OUTPUTFORMAT_STYLED mode. They have the following meaning:

	Tag

	Meaning

	…

	Render the text in a bold / bright style

	<i>…</i>

	Render the text in a italics

	<u>…</u>

	Underline the given text

	…

	Emphasize the text, usually by inverting foreground and background colors

	<strike>…</strike>

	Display the text struck through

The respective styles are only rendered correctly if the console
supports ANSI styles. You can check ANSI support by calling the
response’s hasColorSupport() method. Contrary to what that method
name suggests, at the time of this writing colored output is not
directly supported by Flow. However, such a feature is planned
for the future.

Tip

The tags supported by Flow can also be used to style the
description of a command in its DocComment.

Symfony/Console Methods

The CommandController makes use of Symfony/Console internally and
provides various methods directly from the CommandController’s output member:

	TableHelper

	outputTable($rows, $headers = NULL)

	DialogHelper

	select($question, $choices, $default = NULL, $multiSelect = false, $attempts = FALSE)

	ask($question, $default = NULL, array $autocomplete = array())

	askConfirmation($question, $default = TRUE)

	askHiddenResponse($question, $fallback = TRUE)

	askAndValidate($question, $validator, $attempts = FALSE, $default = NULL, array $autocomplete = NULL)

	askHiddenResponseAndValidate($question, $validator, $attempts = FALSE, $fallback = TRUE)

	ProgressHelper

	progressStart($max = NULL)

	progressSet($current)

	progressAdvance($step = 1)

	progressFinish()

Here’s an example showing of some of those functions:

namespace Acme\Demo\Command;

use Neos\Flow\Annotations as Flow;
use Neos\Flow\Cli\CommandController;

/**
 * @Flow\Scope("singleton")
 */
class MyCommandController extends CommandController {

 /**
 * @return string
 */
 public function myCommand() {
 // render a table
 $this->output->outputTable(array(
 array('Bob', 34, 'm'),
 array('Sally', 21, 'f'),
 array('Blake', 56, 'm')
),
 array('Name', 'Age', 'Gender'));

 // select
 $colors = array('red', 'blue', 'yellow');
 $selectedColorIndex = $this->output->select('Please select one color', $colors, 'red');
 $this->outputLine('You choose the color %s.', array($colors[$selectedColorIndex]));

 // ask
 $name = $this->output->ask('What is your name?' . PHP_EOL, 'Bob', array('Bob', 'Sally', 'Blake'));
 $this->outputLine('Hello %s.', array($name));

 // prompt
 $likesDogs = $this->output->askConfirmation('Do you like dogs?');
 if ($likesDogs) {
 $this->outputLine('You do like dogs!');
 }

 // progress
 $this->output->progressStart(600);
 for ($i = 0; $i < 300; $i ++) {
 $this->output->progressAdvance();
 usleep(5000);
 }
 $this->output->progressFinish();

 }
}

Runtime and Compile Time

The majority of the commands are run at point when Flow is fully
initialized and all of the framework features are available. However,
for certain low-level operations it is desirable to execute code
much earlier in the boot process – during compile time. Commands
like neos.flow:cache:flush or the internal compilation commands
which render the PHP proxy classes cannot rely on a fully initialized
system.

It is possible – also for custom commands – to run commands run during
compile time. The developer implementing such a command must have a
good understanding of the inner workings of the bootstrap and parts
of the proxy building, because compile time has several limitations,
including but not limited to the following:

	dependency injection does not support property injection

	aspects are not yet active

	persistence is not yet enabled

	certain caches have not been built yet

In general, all functionality which relies on proxy classes will not
be available during compile time.

If you are sure that compile time is the right choice for your command,
you can register it as a compile time command by running an API method
in the boot() method of your package’s Package class:

namespace Acme\Foo;
use Neos\Flow\Package\Package as BasePackage;

/**
 * Acme.Foo Package
 */
class Package extends BasePackage {

 /**
 * Invokes custom PHP code directly after the package manager has been initialized.
 *
 * @param \Neos\Flow\Core\Bootstrap $bootstrap The current bootstrap
 * @return void
 */
 public function boot(\Neos\Flow\Core\Bootstrap $bootstrap) {
 $bootstrap->registerRequestHandler(new \Acme\Foo\Command\MyCommandController($bootstrap));
 }
}

For more details you are encouraged to study the implementation of
Flow’s own compile time commands.

Executing Sub Commands

Most command methods are designed to be called exclusively through the
command line and should not be invoked internally through a PHP method
call. They may rely on a certain application state, some exceeding
arguments provided through the Request object or simply are compile
time commands which must not be run from runtime commands.
Therefore, the safest way to let a command execute a second command
is through a PHP sub process.

The PHP bootstrap mechanism provides a method for executing arbitrary
commands through a sub process. This method is located in the Scripts
class and can be used as follows:

use Neos\Flow\Annotations as Flow;
use Neos\Flow\Core\Booting\Scripts;

/**
 * @Flow\InjectConfiguration(package="Neos.Flow")
 * @var array
 */
protected $flowSettings;

public function runCommand() {
 $success = Scripts::executeCommand('acme.foo:bar:baz', $this->flowSettings);
}

Sometimes it can be useful to execute commands asynchronously, for example when triggering time-consuming
tasks where the result is not instantly required (like sending confirmation emails, converting files, …).
This can be done with the Scripts::executeCommandAsync()* method:

public function runCommand() {
 $commandArguments = ['some-argument' => 'some value'];
 Scripts::executeCommandAsync('acme.foo:bar:baz', $this->flowSettings, $commandArguments);
}

Note

Because asynchronous commands are invoked in a separate thread, potential exceptions or failures will
not be reported. While this can be desired, it might require additional monitoring on the command-side
(e.g. a failure log).

Quitting and Exit Code

Commands should not use PHP’s exit() or die() method but rather let
Flow’s bootstrap perform a clean shutdown of the framework. The base
CommandController provides two API methods for initiating a shutdown
and optionally passing an exit code to the console:

	quit($exitCode) stops execution right after this command, performs a clean shutdown of Flow.

	sendAndExit($exitCode) sends any output buffered in the Response object and exits immediately,
without shutting down Flow.

The quit() method is the recommended way to exit Flow. The other
command, sendAndExit(), is reserved for special cases where Flow
is not stable enough to continue even with the shutdown procedure. An
example for such a case is the neos.flow:cache:flush command which
removes all cache entries which requires an immediate exit because
Flow relies on caches being intact.

Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) is a programming paradigm which complements
Object-Oriented Programming (OOP) by separating concerns of a software
application to improve modularization. The separation of concerns (SoC) aims for
making a software easier to maintain by grouping features and behavior into
manageable parts which all have a specific purpose and business to take care of.

OOP already allows for modularizing concerns into distinct methods, classes and
packages. However, some concerns are difficult to place as they cross the
boundaries of classes and even packages. One example for such a cross-cutting
concern is security: Although the main purpose of a Forum package is to display
and manage posts of a forum, it has to implement some kind of security to assert
that only moderators can approve or delete posts. And many more packages need a
similar functionality for protect the creation, deletion and update of records.
AOP enables you to move the security (or any other) aspect into its own package
and leave the other objects with clear responsibilities, probably not
implementing any security themselves.

Aspect-Oriented Programming has been around in other programming languages for
quite some time now and sophisticated solutions taking advantage of AOP exist.
Flow’s AOP framework allows you to use of the most popular AOP techniques in
your own PHP application. In contrast to other approaches it doesn’t require any
special PHP extensions or manual compile steps – and it’s a breeze to configure.

Tip

In case you are unsure about some terms used in this introduction or later
in this chapter, it’s a good idea looking them up (for example at
Wikipedia [http://en.wikipedia.org/]). Don’t think that you’re the only one who has never heard of a
Pointcut or SoC 1 – we had a hard time learning these too. However,
it’s worth the hassle, as a common vocabulary improves the communication
between developers a lot.

How AOP can help you

Let’s imagine you want to log a message inside methods of your domain model:

Example: Logging without AOP:

namespace Examples\Forum\Domain\Model;

class Forum {

 /**
 * @Flow\Inject
 * @var \Examples\Forum\Logger\ApplicationLoggerInterface
 */
 protected $applicationLogger;

 /**
 * Delete a forum post and log operation
 *
 * @param \Examples\Forum\Domain\Model\Post $post
 * @return void
 */
 public function deletePost(Post $post) {
 $this->applicationLogger->log('Removing post ' . $post->getTitle(), LOG_INFO);
 $this->posts->remove($post);
 }

}

If you have to do this in a lot of places, the logging would become a part of you
domain model logic. You would have to inject all the logging dependencies in your
models. Since logging is nothing that a domain model should care about, this is
an example of a non-functional requirement and a so-called cross-cutting concern.

With AOP, the code inside your model would know nothing about logging. It will
just concentrate on the business logic.

Example: Logging with AOP (your class):

namespace Examples\Forum\Domain\Model;

class Forum {

 /**
 * Delete a forum post
 *
 * @param \Examples\Forum\Domain\Model\Post $post
 * @return void
 */
 public function deletePost(Post $post) {
 $this->posts->remove($post);
 }

}

The logging is now done from an AOP aspect. It’s just a class tagged with
@aspect and a method that implements the specific action, an
before advice. The expression after the @before tag tells the AOP framework
to which method calls this action should be applied. It’s called pointcut expression
and has many possibilities, even for complex scenarios.

Example: Logging with AOP (aspect):

namespace Examples\Forum\Logging;

/**
 * @Flow\Aspect
 */
class LoggingAspect {

 /**
 * @Flow\Inject
 * @var \Examples\Forum\Logger\ApplicationLoggerInterface
 */
 protected $applicationLogger;

 /**
 * Log a message if a post is deleted
 *
 * @param \Neos\Flow\AOP\JoinPointInterface $joinPoint
 * @Flow\Before("method(Examples\Forum\Domain\Model\Forum->deletePost())")
 * @return void
 */
 public function logDeletePost(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
 $post = $joinPoint->getMethodArgument('post');
 $this->applicationLogger->log('Removing post ' . $post->getTitle(), LOG_INFO);
 }

}

As you can see the advice has full access to the actual method call, the join point,
with information about the class, the method and method arguments.

AOP concepts and terminology

At the first (and the second, third, …) glance, the terms used in the AOP
context are not really intuitive. But, similar to most of the other AOP
frameworks, we better stick to them, to keep a common language between
developers. Here they are:

	Aspect

	An aspect is the part of the application which cross-cuts the core concerns
of multiple objects. In Flow, aspects are implemented as regular classes
which are tagged by the @aspect annotation. The methods of an aspect class
represent advices, the properties may be used for introductions.

	Join point

	A join point is a point in the flow of a program. Examples are the execution
of a method or the throw of an exception. In Flow, join points are
represented by the Neos\Flow\AOP\JoinPoint object which contains more
information about the circumstances like name of the called method, the
passed arguments or type of the exception thrown. A join point is an event
which occurs during the program flow, not a definition which defines that
point.

	Advice

	An advice is the action taken by an aspect at a particular join point.
Advices are implemented as methods of the aspect class. These methods are
executed before and / or after the join point is reached.

	Pointcut

	The pointcut defines a set of join points which need to be matched before
running an advice. The pointcut is configured by a pointcut expression
which defines when and where an advice should be executed. Flow uses
methods in an aspect class as anchors for pointcut declarations.

	Pointcut expression

	A pointcut expression is the condition under which a join point should match.
It may, for example, define that join points only match on the execution of a
(target-) method with a certain name. Pointcut expressions are used in
pointcut- and advice declarations.

	Target

	A class or method being adviced by one or more aspects is referred to as a
target class /-method.

	Introduction

	An introduction redeclares the target class to implement an additional
interface. By declaring an introduction it is possible to introduce new
interfaces and an implementation of the required methods without touching
the code of the original class. Additionally introductions can be used to
add new properties to a target class.

The following terms are related to advices:

	Before advice

	A before advice is executed before the target method is being called, but
cannot prevent the target method from being executed.

	After returning advice

	An after returning advice is executed after returning from the target
method. The result of the target method invocation is available to the after
returning advice, but it can’t change it. If the target method throws an
exception, the after returning advice is not executed.

	After throwing advice

	An after throwing advice is only executed if the target method throwed an
exception. The after throwing advice may fetch the exception type from the
join point object.

	After advice

	An after advice is executed after the target method has been called, no
matter if an exception was thrown or not.

	Around advice

	An around advice is wrapped around the execution of the target method. It
may execute code before and after the invocation of the target method and
may ultimately prevent the original method from being executed at all. An
around advice is also responsible for calling other around advices at the
same join point and returning either the original or a modified result for
the target method.

	Advice chain

	If more than one around advice exists for a join point, they are called in
an onion-like advice chain: The first around advice probably executes some
before-code, then calls the second around advice which calls the target
method. The target method returns a result which can be modified by the
second around advice, is returned to the first around advice which finally
returns the result to the initiator of the method call. Any around advice
may decide to proceed or break the chain and modify results if necessary.

Flow AOP concepts

Aspect-Oriented Programming was, of course, not invented by us 2. Since the
initial release of the concept, dozens of implementations for various
programming languages evolved. Although a few PHP-based AOP frameworks do exist,
they followed concepts which did not match the goals of Flow (to provide a
powerful, yet developer-friendly solution) when the development of Neos
began. We therefore decided to create a sophisticated but pragmatic
implementation which adopts the concepts of AOP but takes PHP’s specialties and
the requirements of typical Flow applications into account. In a few cases this
even lead to new features or simplifications because they were easier to
implement in PHP compared to Java.

Flow pragmatically implements a reduced subset of AOP, which satisfies most
needs of web applications. The join point model allows for intercepting method
executions but provides no special support for advising field access 3.
Pointcut expressions are based on well-known regular expressions instead of
requiring the knowledge of a dedicated expression language. Pointcut filters and
join point types are modularized and can be extended if more advanced
requirements should arise in the future.

Implementation overview

Flow’s AOP framework does not require a pre-processor or an aspect-aware PHP
interpreter to weave in advices. It is implemented and based on pure PHP and
doesn’t need any specific PHP extension. However, it does require the Object
Manager to fulfill its task.

Flow uses PHP’s reflection capabilities to analyze declarations of aspects,
pointcuts and advices and implements method interceptors as a dynamic proxy. In
accordance to the GoF patterns 4, the proxy classes act as a placeholders for
the target object. They are true subclasses of the original and override adviced
methods by implementing an interceptor method. The proxy classes are generated
automatically by the AOP framework and cached for further use. If a class has
been adviced by some aspect, the Object Manager will only deliver instances of
the proxy class instead of the original.

The approach of storing generated proxy classes in files provides the whole
advantage of dynamic weaving with a minimum performance hit. Debugging of
proxied classes is still easy as they truly exist in real files.

Aspects

Aspects are abstract containers which accommodate pointcut-, introduction- and
advice declarations. In most frameworks, including Flow, aspects are defined as
plain classes which are tagged (annotated) as an aspect. The following example
shows the definition of a hypothetical FooSecurity aspect:

Example: Declaration of an aspect:

namespace Example\MySecurityPackage;

/**
 * An aspect implementing security for Foo
 *
 * @Flow\Aspect
 */
class FooSecurityAspect {

}

As you can see, \Example\MySecurityPackage\FooSecurityAspect is just a regular
PHP class which may (actually must) contain methods and properties. What
makes it an aspect is solely the Aspect annotation mentioned in the class
comment. The AOP framework recognizes this tag and registers the class as an
aspect.

Note

A void aspect class doesn’t make any sense and if you try to run the above
example, the AOP framework will throw an exception complaining that no
advice, introduction or pointcut has been defined.

Note

With Flow 4.0+ classes that are marked final can now be targeted by AOP advices
by default.
This can be explicitly disabled with a @Flow\Proxy(false) annotation on the
class in question.

Pointcuts

If we want to add security to foo, we need a method which carries out the
security checks and a definition where and when this method should be executed.
The method is an advice which we’re going to declare in a later section, the
“where and when” is defined by a pointcut expression in a pointcut declaration.

You can either define the pointcut in the advice declaration or set up named
pointcuts to help clarify their use.

A named pointcut is represented by a method of an aspect class. It contains
two pieces of information: The pointcut name, defined by the method name,
and the pointcut expression, declared by an annotation. The following pointcut
will match the execution of methods whose name starts with “delete”, no matter
in which class they are defined:

Example: Declaration of a named pointcut:

/**
 * A pointcut which matches all methods whose name starts with "delete".
 *
 * @Flow\Pointcut("method(.*->delete.*())")
 */
public function deleteMethods() {}

Pointcut expressions

As already mentioned, the pointcut expression configures the filters which are
used to match against join points. It is comparable to an if condition in PHP:
Only if the whole condition evaluates to TRUE, the statement is executed -
otherwise it will be just ignored. If a pointcut expression evaluates to TRUE,
the pointcut matches and advices which refer to this pointcut become active.

Note

The AOP framework AspectJ provides a complete pointcut language with dozens
of pointcut types and expression constructs. Flow makes do with only a
small subset of that language, which we think already suffice for even
complex enterprise applications. If you’re interested in the original
feature set, it doesn’t hurt throwing a glance at the AspectJ Programming
Guide.

Pointcut designators

A pointcut expression always consists of two parts: The poincut designator and
its parameter(s). The following designators are supported by Flow:

method()

The method() designator matches on the execution of methods with a certain
name. The parameter specifies the class and method name, regular expressions
can be used for more flexibility 5. It follows the following scheme:

method([public|protected] ClassName->methodName())

Specifying the visibility modifier (public or protected) is optional - if none
is specified, both visibilities will match. The class- and method name can be
specified as a regular expression.

Warning

It is not possible to match for interfaces within the method()
pointcut expression. Instead of method(InterfaceName->methodName()), use
within(InterfaceName) && method(.*->methodName()).

Here are some examples for matching method executions:

Example: method() pointcut designator

Matches all public methods in class Example\MyPackage\MyObject:

method(public Example\MyPackage\MyObject->.*())

Matches all methods prefixed with “delete” (even protected ones) in
any class of the package Example.MyPackage:

method(Example\MyPackage.*->delete.*())

Matches all methods except injectors in class Example\MyPackage\MyObject:

method(Example\MyPackage\MyObject->(?!inject).*())

Note

In other AOP frameworks, including AspectJ™ and Spring™, the method
designator does not exist. They rather use a more fine grained approach
with designators such as execution, call and cflow. As Flow only supports
matching to method execution join points anyway, we decided to simplify
things by allowing only a more general method designator.

The method() designator also supports so called runtime evaluations,
meaning you can specify values for the method’s arguments. If those argument
values do not match the advice won’t be executed. The following example should
give you an idea how this works:

Example: Runtime evaluations for the method() pointcut designator

method(Example\MyPackage\MyClass->update(title == "Flow", override == TRUE))

Besides the method arguments you can also access the properties of the current
object or a global object like the party that is currently authenticated.
A detailed description of the runtime evaluations possibilities is described
below in the section about the evaluate() pointcut designator.

class()

The class() designator matches on the execution of methods defined in a
class with a certain name. The parameter specifies the class name, again
regular expressions are allowed here. The class() designator follows this
simple scheme:

class(classname)

Example: class() pointcut designator

Matches all methods in class Example\MyPackage\MyObject:

class(Example\MyPackage\MyObject)

Matches all methods in namespace “Service”:

class(Example\MyPackage\Service\.*)

Warning

The class pointcut expression does not match interfaces. If
you want to match interfaces, use within() instead.

within()

The within() designator matches on the execution of methods defined in a
class of a certain type. A type matches if the class is a subclass of or
implements an interface of the given name. The within() designator has this
simple syntax:

within(type)

Example: within() pointcut designator

Matches all methods in classes which implement the logger interface:

within(Example\Flow\Log\LoggerInterface)

Matches all methods in classes which are part of the Foo layer:

within(Example\Flow\FooLayerInterface)

Note

within() will not match on specific nesting in the call stack,
even when the name might imply this. It’s just a more generic class
designator matching whole type hierarchies.

classAnnotatedWith()

The classAnnotatedWith() designator matches on classes which are tagged with a
certain annotation. Currently only the actual annotation class name can be matched,
arguments of the annotation cannot be specified:

classAnnotatedWith(annotation)

Example: classAnnotatedWith() pointcut designator

Matches all classes which are tagged with Flow’s Entity annotation:

classAnnotatedWith(Neos\Flow\Annotations\Entity)

Matches all classes which are tagged with a custom annotation:

classAnnotatedWith(Acme\Demo\Annotations\Important)

methodAnnotatedWith()

The methodAnnotatedWith() designator matches on methods which are annotated
with a certain annotation. Currently only the actual annotation class name can be
matched, arguments of the annotation cannot be specified. The syntax of this
designator is as follows:

methodAnnotatedWith(annotation)

Example: methodAnnotatedWith() pointcut designator

Matches all method which are annotated with a Special annotation:

methodAnnotatedWith(Acme\Demo\Annotations\Special)

setting()

The setting() designator matches if the given configuration option is set to
TRUE, or if an optional given comparison value equals to its configured value.
This is helpful to make advices configurable and switch them off in a
specific Flow context or just for testing. You can use this designator
as follows:

Example: setting() pointcut designator

Matches if “my.configuration.option” is set to TRUE in the current execution
context:

setting(my.configuration.option)

Matches if “my.configuration.option” is equal to “AOP is cool” in the current
execution context: (Note: single and double quotes are allowed)

setting(my.configuration.option = 'AOP is cool')

evaluate()

The evaluate() designator is used to execute advices depending on constraints
that have to be evaluated during runtime. This could be a specific value for a
method argument (see the method() designator) or checking a certain property of
the current object or accessing a global object like the currently
authenticated party. In general you can access object properties by
the . syntax and global objects are registered under the current. keyword. Here
is an example showing the possibilities:

Example: evaluate() pointcut designator

Matches if the property name of the global party object (the currently
authenticated user of the security framework) is equal to “Andi”:

evaluate(current.userService.currentUser.name == "Andi")

Matches if the property someProperty of someObject which is a property of the
current object (the object the advice will be executed in) is equal to the
name of the currently authenticated user:

evaluate(this.someObject.someProperty == current.userService.currentUser.name)

Matches if the property someProperty of the current object is equal to one of
the values TRUE, “someString” or the address of the currently authenticated user:

evaluate(this.someProperty in (TRUE, "someString", current.userService.currentUser.address))

Matches if the accounts array in the current party object contains the account
stored in the myAccount property of the current object:

evaluate(current.userService.currentUser.accounts contains this.myAccount)

Matches if at least one of the entries in the first array exists in the second one:

evaluate(current.userService.currentUser.accounts matches ('Administrator', 'Customer', 'User'))

evaluate(current.userService.currentUser.accounts matches this.accounts)

Tip

If you like you can enter more than one constraint in a single evaluate
pointcut designator by separating them with a comma. The evaluate
designator will only match, if all its conditions evaluated to TRUE.

Note

It is possible to register arbitrary singletons to be available as global
objects with the Flow configuration setting Neos.Flow.aop.globalObjects.

filter()

If the built-in filters don’t suit your needs you can even define your own
custom filters. All you need to do is create a class implementing the
Neos\Flow\AOP\Pointcut\PointcutFilterInterface and develop your own logic
for the matches() method. The custom filter can then be invoked by using
the filter() designator:

filter(CustomFilterObjectName)

Example: filter() pointcut designator

If the current method matches is determined by the custom filter:

filter(Example\MyPackage\MyCustomPointcutFilter)

Combining pointcut expressions

All pointcut expressions mentioned in previous sections can be combined into
a whole expression, just like you may combine parts to an overall condition in
an if construct. The supported operators are “&&”, “||” and “!” and they have
the same meaning as in PHP. Nesting expressions with parentheses is not
supported but you may refer to other pointcuts by specifying their full name
(i.e. class- and method name). This final example shows how to combine and
reuse pointcuts and ultimately build a hierarchy of pointcuts which can be used
conveniently in advice declarations:

Example: Combining pointcut expressions:

namespace Example\TestPackage;

/**
 * Fixture class for testing pointcut definitions
 *
 * @Flow\Aspect
 */
class PointcutTestingAspect {

 /**
 * Pointcut which includes all method executions in
 * PointcutTestingTargetClasses except those from Target
 * Class number 3.
 *
 * @Flow\Pointcut("method(Example\TestPackage\PointcutTestingTargetClass.*->.*()) && !method(Example\TestPackage\PointcutTestingTargetClass3->.*())")
 */
 public function pointcutTestingTargetClasses() {}

 /**
 * Pointcut which consists of only the
 * Example\TestPackage\OtherPointcutTestingTargetClass.
 *
 * @Flow\Pointcut("method(Example\TestPackage\OtherPointcutTestingTargetClass->.*())")
 */
 public function otherPointcutTestingTargetClass() {}

 /**
 * A combination of both above pointcuts
 *
 * @Flow\Pointcut("Example\TestPackage\PointcutTestingAspect->pointcutTestingTargetClasses || Example\TestPackage\PointcutTestingAspect->otherPointcutTestingTargetClass")
 */
 public function bothPointcuts() {}

 /**
 * A pointcut which matches all classes from the service layer
 *
 * @Flow\Pointcut("within(Example\Flow\ServiceLayerInterface)")
 */
 public function serviceLayerClasses() {}

 /**
 * A pointcut which matches any method from the BasicClass and all classes
 * from the service layer
 *
 * @Flow\Pointcut("method(Example\TestPackage\Basic.*->.*()) || within(Neos\Flow\Service.*)")
 */
 public function basicClassOrServiceLayerClasses() {}
}

Declaring advice

With the aspect and pointcuts in place we are now ready to declare the advice.
Remember that an advice is the actual action, the implementation of the concern
you want to weave in to some target. Advices are implemented as interceptors
which may run before and / or after the target method is called. Four advice
types allow for these different kinds of interception: Before, After returning,
After throwing and Around.

Other than being of a certain type, advices always come with a pointcut
expression which defines the set of join points the advice applies for.
The pointcut expression may, as we have seen earlier, refer to other
named pointcuts.

Before advice

A before advice allows for executing code before the target method is invoked.
However, the advice cannot prevent the target method from being executed, nor
can it take influence on other before advices at the same join point.

Example: Declaration of a before advice:

/**
 * Before advice which is invoked before any method call within the News
 * package
 *
 * @Flow\Before("class(Example\News\.*->.*())")
 */
public function myBeforeAdvice(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
}

After returning advice

The after returning advice becomes active after the target method normally
returns from execution (i.e. it doesn’t throw an exception). After returning
advices may read the result of the target method, but can’t modify it.

Example: Declaration of an after returning advice:

/**
 * After returning advice
 *
 * @Flow\AfterReturning("method(public Example\News\FeedAgregator->[import|update].*()) || Example\MyPackage\MyAspect->someOtherPointcut")
 */
public function myAfterReturningAdvice(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
}

After throwing advice

Similar to the “after returning” advice, the after throwing advice is invoked
after method execution, but only if an exception was thrown.

Example: Declaration of an after throwing advice:

/**
 * After throwing advice
 *
 * @Flow\AfterThrowing("within(Example\News\ImportantLayer)")
 */
public function myAfterThrowingAdvice(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
}

After advice

The after advice is a combination of “after returning” and “after throwing”:
These advices become active after method execution, no matter if an exception
was thrown or not.

Example: Declaration of an after advice:

/**
 * After advice
 *
 * @Flow\After("Example\MyPackage\MyAspect->justAPointcut")
 */
public function myAfterAdvice(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
}

Around advice

Finally, the around advice takes total control over the target method and
intercepts it completely. It may decide to call the original method or not and
even modify the result of the target method or return a completely
different one. Obviously the around advice is the most powerful and should only
be used if the concern can’t be implemented with the alternative advice types.
You might already guess how an around advice is declared:

Example: Declaration of an around advice:

/**
 * Around advice
 *
 * @Flow\Around("Example\MyPackage\MyAspect->justAPointcut")
 */
public function myAroundAdvice(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
}

Implementing advice

The final step after declaring aspects, pointcuts and advices is to fill the
advices with life. The implementation of an advice is located in the same
method it has been declared. In that regard, an aspect class behaves like any
other object in Flow – you therefore can take advantage of dependency
injection in case you need other objects to fulfill the task of your advice.

Accessing join points

As you have seen in the previous section, advice methods always expect an
argument of the type Neos\Flow\AOP\JoinPointInterface. This join point object
contains all important information about the current join point. Methods like
getClassName() or getMethodArguments() let the advice method classify the
current context and enable you to implement advices in a way that they can be
reused in different situations. For a full description of the join point object
refer to the API documentation.

Advice chains

Around advices are a special advice type in that they have the power to
completely intercept the target method. For any other advice type, the advice
methods are called by the proxy class one after another. In case of the around
advice, the methods form a chain where each link is responsible to pass over
control to the next.

[image: Control flow of an advice chain]
Control flow of an advice chain

Examples

Let’s put our knowledge into practice and start with a simple example. First we
would like to log each access to methods within a certain package. The following
code will just do that:

Example: Simple logging with aspects:

namespace Example\MyPackage;

/**
 * A logging aspect
 *
 * @Flow\Aspect
 */
class LoggingAspect {

 /**
 * @var \Psr\Log\LoggerInterface A logger implementation
 */
 protected $logger;

 /**
 * For logging we need a logger, which we will get injected automatically by
 * the Object Manager
 *
 * @param \Neos\Flow\Log\PsrSystemLoggerInterface $logger The System Logger
 * @return void
 */
 public function injectLogger(\Neos\Flow\Log\PsrSystemLoggerInterface $logger) {
 $this->logger = $logger;
 }

 /**
 * Before advice, logs all access to public methods of our package
 *
 * @param \Neos\Flow\AOP\JoinPointInterface $joinPoint: The current join point
 * @return void
 * @Flow\Before("method(public Example\MyPackage\.*->.*())")
 */
 public function logMethodExecution(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
 $logMessage = 'The method ' . $joinPoint->getMethodName() . ' in class ' .
 $joinPoint->getClassName() . ' has been called.';
 $this->logger->info($logMessage);
 }
}

Note that we are using dependency injection for getting the system logger
instance to stay independent from any specific logging implementation. We don’t
have to care about the kind of logger and where it comes from.

Finally an example for the implementation of an around advice: For a guest
book, we want to reject the last name “Sarkosh” (because it should be
“Skårhøj”), every time it is submitted. Admittedly you probably wouldn’t
implement this great feature as an aspect, but it’s easy enough to demonstrate
the idea. For illustration purposes, we don’t define the pointcut expression in
place but refer to a named pointcut.

Example: Implementation of an around advice:

namespace Example\Guestbook;

/**
 * A lastname rejection aspect
 *
 * @Flow\Aspect
 */
class LastNameRejectionAspect {

 /**
 * A pointcut which matches all guestbook submission method invocations
 *
 * @Flow\Pointcut("method(Example\Guestbook\SubmissionHandlingThingy->submit())")
 */
 public function guestbookSubmissionPointcut() {}

 /**
 * Around advice, rejects the last name "Sarkosh"
 *
 * @param \Neos\Flow\AOP\JoinPointInterface $joinPoint The current join point
 * @return mixed Result of the target method
 * @Flow\Around("Example\Guestbook\LastNameRejectionAspect->guestbookSubmissionPointcut")
 */
 public function rejectLastName(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
 if ($joinPoint->getMethodArgument('lastName') === 'Sarkosh') {
 throw new \Exception('Sarkosh is not a valid last name - should be Skårhøj!');
 }
 $result = $joinPoint->getAdviceChain()->proceed($joinPoint);
 return $result;
 }
}

Please note that if the last name is correct, we proceed with the remaining
links in the advice chain. This is very important to assure that the original
(target-) method is finally called. And don’t forget to return the result of
the advice chain …

Introductions

Introductions (also known as Inter-type Declarations) allow to subsequently
implement an interface or new properties in a given target class.
The (usually) newly introduced methods (required by the new interface) can
then be implemented by declaring an advice. If no implementation is defined,
an empty placeholder method will be generated automatically to satisfy
the contract of the introduced interface.

Interface introduction

Like advices, introductions are declared by annotations. But in contrast to
advices, the anchor for an introduction declaration is the class declaration of
the aspect class. The annotation tag follows this syntax:

@Flow\Introduce("PointcutExpression", interfaceName="NewInterfaceName")

Although the PointcutExpression is just a normal pointcut expression, which may
also refer to named pointcuts, be aware that only expressions filtering for
classes make sense. You cannot use the method() pointcut designator in this
context and will typically take the class() designator instead.

The following example introduces a new interface NewInterface to the class
OldClass and also provides an implementation of the method newMethod.

Example: Interface introduction:

namespace Example\MyPackage;

/**
 * An aspect for demonstrating introductions
 *
 * Introduces Example\MyPackage\NewInterface to the class Example\MyPackage\OldClass:
 *
 * @Flow\Introduce("class(Example\MyPackage\OldClass)", interfaceName="Example\MyPackage\NewInterface")
 * @Flow\Aspect
 */
class IntroductionAspect {

 /**
 * Around advice, implements the new method "newMethod" of the
 * "NewInterface" interface
 *
 * @param \Neos\Flow\AOP\JoinPointInterface $joinPoint The current join point
 * @return void
 * @Flow\Around("method(Example\MyPackage\OldClass->newMethod())")
 */
 public function newMethodImplementation(\Neos\Flow\AOP\JoinPointInterface $joinPoint) {
 // We call the advice chain, in case any other advice is declared for
 // this method, but we don't care about the result.
 $someResult = $joinPoint->getAdviceChain()->proceed($joinPoint);

 $a = $joinPoint->getMethodArgument('a');
 $b = $joinPoint->getMethodArgument('b');
 return $a + $b;
 }
}

Trait introduction

Like the interface introductions, also trait introductions are declared
by annotation. It even uses the same annotation with a different argument:

@Flow\Introduce("PointcutExpression", traitName="NewTraitName")

Again only pointcuts filtering for classes make sense. The traitName must
be a fully qualified “class” (trait) name without leading backslash.

The following example introduces a trait SomeTrait to the class MyClass.

Example: Trait introduction:

namespace Example\MyPackage;

/**
 * An aspect for demonstrating trait introduction
 *
 * Introduces Example\MyPackage\SomeTrait to the class Example\MyPackage\MyClass:
 *
 * @Flow\Introduce("class(Example\MyPackage\MyClass)", traitName="Example\MyPackage\SomeTrait")
 * @Flow\Aspect
 */
class TraitIntroductionAspect {
}

Property introduction

The declaration of a property introduction anchors to a property inside an aspect.

Form of the declaration:

/**
 * @var type
 * @Flow\Introduce("PointcutExpression")
 */
protected $propertyName;

The declared property will be added to the target classes matched by the pointcut.

The following example introduces a new property “subtitle” to the class
Example\Blog\Domain\Model\Post:

Example: Property introduction:

namespace Example\MyPackage;

/**
 * An aspect for demonstrating property introductions
 *
 * @Flow\Aspect
 */
class PropertyIntroductionAspect {

 /**
 * @var string
 * @Column(length=40)
 * @Flow\Introduce("class(Example\Blog\Domain\Model\Post)")
 */
 protected $subtitle;

}

Implementation details

AOP proxy mechanism

The following diagram illustrates the building process of a proxy class:

[image: Proxy building process]
Proxy building process

	1

	SoC could, by the way, also mean “Self-organized criticality” or
“Service-oriented Computing” or refer to Google’s “Summer of Code” …

	2

	AOP was rather invented by Gregor Kiczalesand his team at the Xerox Palo
Alto Research Center. The original implementation was called AspectJ and is
an extension to Java. It still serves as a de-facto standard and is now
maintained by the Eclipse Foundation.

	3

	Intercepting setting and retrieval of properties can easily be achieved
by declaring a before-, after- or around advice.

	4

	GoF means Gang of Four and refers to the authors of the classic book
Design Patterns – Elements of Reusable Object-Oriented Software

	5

	Internally, PHP’s preg_match() function is used to match the method
name. The regular expression will be enclosed by /^…$/ (without the dots
of course). Backslashes will be escaped to make namespace use possible
without further hassle.

Security

Security Framework

All tasks related to security of a Flow application are handled centrally by the security
framework. Besides other functionality, this includes especially features like
authentication, authorization, channel security and a powerful policy component. This
chapter describes how you can use Flow’s security features and how they work internally.

Security context

The Security Context is initialized as soon as an HTTP request is being
dispatched. It lies in session scope and holds context data like the current authentication status. That means, if you
need data related to security, the security context (you can get it easily with dependency injection) will be your main
information source. The details of the context’s data will be described in the next chapters.

Authentication

One of the main things people associate with security is authentication. That means to
identify your communication partner - the one sending a request to Flow. Therefore the
framework provides an infrastructure to easily use different mechanisms for such a
plausibility proof. The most important achievement of the provided infrastructure is its
flexible extensibility. You can easily write your own authentication mechanisms and
configure the framework to use them without touching the framework code itself. The
details are explained in the section Implementing your own authentication mechanism.

Using the authentication controller

First, let’s see how you can use Flow’s authentication features. There is a base
controller in the security package: the
AbstractAuthenticationController,
which already contains almost everything you need to authenticate an account. This controller has
three actions, namely loginAction(), authenticateAction() and logoutAction(). To use authentication in your
project you have to inherit from this controller, provide a template for the login action (e.g. a login form) and
implement at least the abstract method onAuthenticationSuccess(). This method is called if authentication
succeeded and will be passed the intercepted request, which triggered authentication. This can be used to resume the
original request in order to send the user to the protected area he had tried to access.
You may also want to override onAuthenticationFailure() to react on login problems appropriately.

Example: Simple authentication controller

<?php
namespace Acme\YourPackage\Controller;

use Neos\Flow\Annotations as Flow;
use Neos\Flow\Mvc\ActionRequest;
use Neos\Flow\Security\Authentication\Controller\AbstractAuthenticationController;

class AuthenticationController extends AbstractAuthenticationController {

 /**
 * Displays a login form
 *
 * @return void
 */
 public function indexAction() {
 }

 /**
 * Will be triggered upon successful authentication
 *
 * @param ActionRequest $originalRequest The request that was intercepted by the security framework, NULL if there was none
 * @return string
 */
 protected function onAuthenticationSuccess(ActionRequest $originalRequest = NULL) {
 if ($originalRequest !== NULL) {
 $this->redirectToRequest($originalRequest);
 }
 $this->redirect('someDefaultActionAfterLogin');
 }

 /**
 * Logs all active tokens out and redirects the user to the login form
 *
 * @return void
 */
 public function logoutAction() {
 parent::logoutAction();
 $this->addFlashMessage('Logout successful');
 $this->redirect('index');
 }
}

The mechanism that is eventually used to authenticate is implemented in a so
called authentication provider. The most common provider (PersistedUsernamePasswordProvider) authenticates a user
account by checking a username and password against accounts stored in the database. 1

Example: Configuration of a username/password authentication mechanism in Settings.yaml

Neos:
 Flow:
 security:
 authentication:
 providers:
 'SomeAuthenticationProvider':
 provider: 'PersistedUsernamePasswordProvider'

This registers the
PersistedUsernamePasswordProvider
authentication provider under the name “SomeAuthenticationProvider” as the only, global authentication mechanism. To
successfully authenticate an account with this provider, you’ll obviously have to
provide a username and password. This is done by sending two POST variables to the
authentication controller.
Given there is a route that resolves “your/app/authenticate” to the authenticateAction() of the custom
AuthenticationController, users can be authenticated with a simple login form like the following:

Example: A simple login form

<form action="your/app/authenticate" method="post">
 <input type="text"
 name="__authentication[Neos][Flow][Security][Authentication][Token][UsernamePassword][username]" />
 <input type="password" name="__authentication[Neos][Flow][Security][Authentication][Token][UsernamePassword][password]" />
 <input type="submit" value="Login" />
</form>

After submitting the form the internal authentication process will be triggered and if
the provided credentials are valid an account will be authenticated afterwards. 2

The internal workings of the authentication process

Now that you know, how you can authenticate, let’s have a look at the internal process.
The following sequence diagram shows the participating components and their interaction:

[image: Internal authentication process]
Internal authentication process

As already explained, the security framework is initialized in the Neos\Flow\Mvc\Dispatcher.
It intercepts the request dispatching before any controller is called. Regarding
authentication, you can see, that a so called authentication token will be stored in the
security context and some credentials will be updated in it.

Authentication tokens

An authentication token holds the status of a specific authentication mechanism, for
example it receives the credentials (e.g. a username and password) needed for
authentication and stores one of the following authentication states in the session. 3

These constants are defined in the authentication token interface
(Neos\Flow\Security\Authentication\TokenInterface) and the status can be obtained
from the getAuthenticationStatus() method of any token.

Tip

If you only want to know, if authentication was successful, you can call the
convenience method isAuthenticated().

	NO_CREDENTIALS_GIVEN

	This is the default state. The token is not authenticated and holds no credentials,
that could be used for authentication.

	WRONG_CREDENTIALS

	It was tried to authenticate the token, but the credentials were wrong.

	AUTHENTICATION_SUCCESSFUL

	The token has been successfully authenticated.

	AUTHENTICATION_NEEDED

	This indicates, that the token received credentials, but has not been authenticated yet.

Now you might ask yourself, how a token receives its credentials. The simple answer
is: It’s up to the token, to fetch them from somewhere. The UsernamePassword
token for example checks for a username and password in the two POST parameters:
__authentication[Neos][Flow][Security][Authentication][Token][UsernamePassword][username] and
__authentication[Neos][Flow][Security][Authentication][Token][UsernamePassword][password] (see
Using the authentication controller). The framework only makes sure that
updateCredentials() is called on every token, then the token has to set possibly
available credentials itself, e.g. from available headers or parameters or anything else
you can provide credentials with.

Sessionless authentication tokens

By default Flow assumes that a token which has been successfully authenticated needs
a session in order to keep being authenticated on the next HTTP request. Therefore,
whenever a user sends a UsernamePassword token for authentication, Flow will
implicitly start a session and send a session cookie.

For authentication mechanisms which don’t require a session this process can be
optimized. Headers for HTTP Basic Authentication or an API key is sent on every
request, so there’s no need to start a session for keeping the token. Especially
when dealing with REST services, it is not desirable to start a session.

Authentication tokens which don’t require a session simply need to implement the
SessionlessTokenInterface marker
interface. If a token carries this marker, the Authentication Manager will refrain
from starting a session during authentication.

Authentication manager and provider

After the tokens have been initialized the original request will be processed by the
resolved controller. Usually this is done by your authentication controller inheriting the
AbstractAuthenticationController of Flow, which will call the authentication manager to authenticate the tokens.
In turn the authentication manager calls all authentication providers in the configured order. A
provider implements a specific authentication mechanism and is therefore responsible for
a specific token type. E.g. the already mentioned PersistedUsernamePasswordProvider
provider is able to authenticate the UsernamePassword token.

After checking the credentials, it is the responsibility of an authentication provider to
set the correct authentication status (see above) and Roles in its corresponding token.
The role implementation resides in the Neos\Flow\Security\Policy namespace. (see the
Policy section for details).

Note

Previously roles were entities, so they were stored in the database. This is no longer
the case since Flow 3.0. Instead the active roles will be determined from the configured
policies. Creating a new role is as easy as adding a line to your Policy.yaml.
If you do need to add roles during runtime, you can use the rolesInitialized Signal of
the PolicyService.

Account management

In the previous section you have seen, how accounts can be authenticated in Flow. What
was concealed so far is, how these accounts are created or what is exactly meant by the
word “account”. First of all let’s define what accounts are in Flow and how they are used
for authentication. Following the OASIS CIQ V3.0 4 specification, an account used for
authentication is separated from a user or more
general a party. The advantage of this separation is the possibility of one user having
more than one account. E.g. a user could have an account for the UsernamePassword
provider and one account connected to an LDAP authentication provider. Another scenario
would be to have different accounts for different parts of your Flow application. Read
the next section Advanced authentication configuration to see how this can be
accomplished.

As explained above, the account stores the credentials needed for authentication.
Obviously these credentials are provider specific and therefore every account is only
valid for a specific authentication provider. This provider to account connection is stored
in a property of the account object named authenticationProviderName. Appropriate
getters and setters are provided. The provider name is configured in the Settings.yaml
file. If you look back to the default configuration, you’ll find the name of the default
authentication provider: DefaultProvider. Besides that, each account has another
property called credentialsSource, which points to the place or describes the
credentials needed for this account. This could be an LDAP query string, or in case of the
PersistedUsernamePasswordProvider, the username, password hash and salt are
stored directly in this member variable.

It is the responsibility of the authentication provider to check the given credentials
from the authentication token, find the correct account for them 5 and to decide about
the authentication status of this token.

Note

In case of a directory service, the real authentication will probably not take place
in the provider itself, but the provider will pass the result of the directory service
on to the authentication token.

Note

The DefaultProvider authentication provider used in the examples is not shipped
with Flow, you have to configure all available authentication providers in your application.

Creating accounts

Creating an account is as easy as creating a new account object and add it to the account
repository. Look at the following example, which uses the Neos\Flow\Security\AccountFactory
to create a simple username/password account for the DefaultProvider:

Example: Add a new username/password account

$identifier = 'andi';
$password = 'secret';
$roles = array('Acme.MyPackage:Administrator');
$authenticationProviderName = 'DefaultProvider';

$account = $this->accountFactory->createAccountWithPassword($identifier, $password, $roles, $authenticationProviderName);
$this->accountRepository->add($account);

The way the credentials are stored internally is completely up to the authentication provider.
The PersistedUsernamePasswordProvider uses the
Neos\Flow\Security\Cryptography\HashService to verify the given password. In the
example above, the given plaintext password will be securely hashed by the HashService.
The hashing is the main magic happening in the AccountFactory and the reason why we don’t
create the account object directly. If you want to learn more about secure password hashing
in Flow, you should read the section about Cryptography below. You can also see, that there
is an array of roles added to the account. This is used by the policy system and will be
explained in the according section below.

Note

This example expects the account factory and account repository to be available in
$this->accountFactory and $this->accountRepository respectively. If you
use this snippet in a command controller, these can be injected very easily by
dependency injection.

Advanced authentication configuration

Parallel authentication

Now that you have seen all components, taking part in the authentication process, it is
time to have a look at some advanced configuration possibilities. Just to remember, here is
again the configuration of an authentication provider:

security:
 authentication:
 providers:
 'DefaultProvider':
 provider: 'PersistedUsernamePasswordProvider'

If you have a closer look at this configuration, you can see, that the word providers is
plural. That means, you have the possibility to configure more than one provider and use
them in “parallel”.

Note

You will have to make sure, that each provider has a unique name. In the example above
the provider name is DefaultProvider.

Example: Configuration of two authentication providers

security:
 authentication:
 providers:
 'MyLDAPProvider':
 provider: 'Neos\MyCoolPackage\Security\Authentication\MyLDAPProvider'
 providerOptions: 'Some LDAP configuration options'
 'DefaultProvider':
 provider: 'PersistedUsernamePasswordProvider'

This will advice the authentication manager to first authenticate over the LDAP provider
and if that fails it will try to authenticate the default provider. So this configuration
can be seen as an authentication fallback chain, of course you can configure as many
providers as you like, but keep in mind that the order matters.

Note

As you can see in the example, the LDAP provider is provided with some options. These
are specific configuration options for each provider, have a look in the detailed
description to know if a specific provider needs more options to be configured and
which.

Multi-factor authentication strategy

There is another configuration option to realize a multi-factor-authentication. It
defaults to oneToken. A configurable authentication strategy of allTokens forces
the authentication manager to always authenticate all configured providers and to make
sure that every single provider returned a positive authentication status to one of its
tokens. The authentication strategy atLeastOneToken will try to authenticate as many
tokens as possible but at least one. This is helpful to realize policies with additional
security only for some resources (e.g. SSL client certificates for an admin backend).

configuration:
 security:
 authentication:
 authenticationStrategy: allTokens

Reuse of tokens and providers

There is another configuration option for authentication providers called token,
which can be specified in the provider settings. By this option you can specify which
token should be used for a provider. Remember the token is responsible for the credentials
retrieval, i.e. if you want to authenticate let’s say via username and password this setting
enables to to specify where these credentials come from. So e.g. you could reuse the one
username/password provider class and specify, whether authentication credentials are sent
in a POST request or set in an HTTP Basic authentication header.

Example: Specifying a specific token type for an authentication provider

security:
 authentication:
 providers:
 'DefaultProvider':
 provider: 'PersistedUsernamePasswordProvider'
 token: 'UsernamePasswordHttpBasic'

Request Patterns

Now that you know about the possibility of configuring more than one authentication
provider another scenario may come to your mind. Just imagine an application with two
areas: One user area and one administration area. Both must be protected, so we need some
kind of authentication. However for the administration area we want a stronger
authentication mechanism than for the user area. Have a look at the following provider
configuration:

Example: Using request patterns

security:
 authentication:
 providers:
 'LocalNetworkProvider':
 provider: 'FileBasedSimpleKeyProvider'
 providerOptions:
 keyName: 'AdminKey'
 authenticateRoles: ['Acme.SomePackage:Administrator']
 requestPatterns:
 'Acme.SomePackage:AdministrationArea':
 pattern: 'ControllerObjectName'
 patternOptions:
 'controllerObjectNamePattern': 'Acme\SomePackage\AdministrationArea\.*'
 'Acme.SomePackage:LocalNetwork':
 pattern: 'Ip'
 patternOptions:
 'cidrPattern': '192.168.178.0/24'
 'MyLDAPProvider':
 provider: 'Neos\MyCoolPackage\Security\Authentication\MyLDAPProvider'
 providerOptions: 'Some LDAP configuration options'
 requestPatterns:
 'Acme.SomePackage:AdministrationArea':
 pattern: 'ControllerObjectName'
 patternOptions:
 'controllerObjectNamePattern': 'Acme\SomePackage\AdministrationArea\.*'
 DefaultProvider:
 provider: 'PersistedUsernamePasswordProvider'
 requestPatterns:
 'Acme.SomePackage:UserArea':
 pattern: 'ControllerObjectName'
 patternOptions:
 'controllerObjectNamePattern': 'Acme\SomePackage\UserArea\.*'

Look at the new configuration option requestPatterns. This enables or disables an
authentication provider, depending on given patterns. The patterns will look into the
data of the current request and tell the authentication system, if they match or not.
The patterns in the example above will match, if the controller object name of the current
request (the controller to be called) matches on the given regular expression. If a
pattern does not match, the corresponding provider will be ignored in the whole
authentication process. In the above scenario this means, all controllers responsible for
the administration area will use the LDAP authentication provider unless the
user is on the internal network, in which case he can use a simple password. The user area
controllers will be authenticated by the default username/password provider.

Note

You can use more than one pattern in the configuration. Then the provider will only be
active, if all patterns match on the current request.

Tip

There can be patterns that match on different data of the request. Just imagine an IP
pattern, that matches on the request IP. You could, e.g. provide different
authentication mechanisms for people coming from your internal network, than for
requests coming from the outside.

Tip

You can easily implement your own pattern. Just implement the interface
Neos\Flow\Security\RequestPatternInterface and configure the pattern with its
full qualified class name.

Available request patterns

	Request Pattern

	Match criteria

	Configuration options

	Description

	ControllerObjectName

	Matches on the object name of the controller
that has been resolved by the MVC dispatcher
for the current request

	controllerObjectNamePattern

	A regular expression to match on the object name, for example:

controllerObjectNamePattern: 'My\Package\Controller\Admin\.*

	Uri

	Matches on the URI of the current request
of the current request

	uriPattern

	A regular expression to match on the URI, for example:

uriPattern: '/admin/.*

	Host

	Matches on the host part of the current
request

	hostPattern

	A wildcard expression to match on the hostname, for example:

hostPattern: '*.mydomain.com' or
hostPattern: 'www.mydomain.*'

	Ip

	Matches on the user IP address of the current
request

	cidrPattern

	A CIDR expression to match on the source IP, for example:

cidrPattern: '192.168.178.0/24' or
cidrPattern: 'fd9e:21a7:a92c:2323::/96'

Authentication entry points

One question that has not been answered so far is: what happens if the authentication
process fails? In this case the authentication manager will throw an
AuthenticationRequired exception. It might not be the best idea to let this exception
settle its way up to the browser, right? Therefore we introduced a concept called
authentication entry points. These entry points catch the mentioned exception and should
redirect the user to a place where she can provide proper credentials. This could be a
login page for the username/password provider or an HTTP header for HTTP authentication. An
entry point can be configured for each authentication provider. Look at the following
example, that redirects to a login page (Using the WebRedirect entry point).

Example: Redirect an ``AuthenticationRequired`` exception to the login page

security:
 authentication:
 providers:
 DefaultProvider:
 provider: PersistedUsernamePasswordProvider
 entryPoint: 'WebRedirect'
 entryPointOptions:
 routeValues:
 '@package': 'Your.Package'
 '@controller': 'Authenticate'
 '@action': 'login'

Note

Prior to Flow version 1.2 the option routeValues was not supported by the WebRedirect
entry point. Instead you could provide the option uri containing a relative or absolute
URI to redirect to. This is still possible, but we recommend to use routeValues in
order to make your configuration more independent from the routing configuration.

Note

Of course you can implement your own entry point and configure it by using its full
qualified class name. Just make sure to implement the
Neos\Flow\Security\Authentication\EntryPointInterface interface.

Tip

If a request has been intercepted by an AuthenticationRequired exception, this
request will be stored in the security context. By this, the authentication process
can resume this request afterwards. Have a look at the Flow authentication controller
if you want to see this feature in action.

Available authentication entry points

	Entry Point

	Description

	Configuration options

	WebRedirect

	Triggers an HTTP redirect
to a given uri or action.

	Expects an associative array with
either an entry uri (obsolete, see Note
above), or an array routeValues; for
example:

uri: login/

or

routeValues:
 '@package': 'Your.Package'
 '@controller': 'Authenticate'
 '@action': 'login'

	HttpBasic

	Adds a WWW-Authenticate
header to the response,
which will trigger the
browsers authentication
form.

	Optionally takes an option realm, which
will be displayed in the authentication
prompt.

Authentication mechanisms shipped with Flow

This section explains the details of each authentication mechanism shipped with Flow.
Mainly the configuration options and usage will be exposed, if you want to know more about
the entire authentication process and how the components will work together, please have a
look in the previous sections.

Simple username/password authentication

Provider

The implementation of the corresponding authentication provider resides in the class
Neos\Flow\Security\Authentication\Provider\PersistedUsernamePasswordProvider.
It is able to authenticate tokens of the type
Neos\Flow\Security\Authentication\Token\UsernamePassword. It expects a credentials
array in the token which looks like that:

array(
 'username' => 'admin',
 'password' => 'plaintextPassword'
);

It will try to find an account in the Neos\Flow\Security\AccountRepository that has
the username value as account identifier and fetch the credentials source.

Tip

You should always use the Flow hash service to generate hashes! This will make sure
that you really have secure hashes.

The provider will try to authenticate the
token by asking the Flow hash service to verify the hashed password against the given
plaintext password from the token.
If you want to know more about accounts and how you can create them, look in the
corresponding section above.

Token

The username/password token is implemented in the class
Neos\Flow\Security\Authentication\Token\UsernamePassword. It fetches the credentials
from the HTTP POST data, look at the following program listing for details:

$postArguments = $this->environment->getRawPostArguments();
$username = \Neos\Utility\ObjectAccess::getPropertyPath($postArguments,
 '__authentication.Neos.Flow.Security.Authentication.Token.UsernamePassword.username');
$password = \Neos\Utility\ObjectAccess::getPropertyPath($postArguments,
 '__authentication.Neos.Flow.Security.Authentication.Token.UsernamePassword.password');

Note

The token expects a plaintext password in the POST data. That does not mean, you have
to transfer plaintext passwords, however it is not the responsibility of the
authentication layer to encrypt the transfer channel. Look in the section about
Application firewall for any details.

Implementing your own authentication mechanism

One of the main goals for the authentication architecture was to provide an easily
extensible infrastructure. Now that the authentication process has been explained, you’ll
here find the steps needed to implement your own authentication mechanism:

Authentication token

You’ll have to provide an authentication token, that implements the interface
Neos\Flow\Security\Authentication\TokenInterface:

	The most interesting method is updateCredentials(). There you’ll get the current
request and you’ll have to make sure that credentials sent from the client will be
fetched and stored in the token.

	Implement the remaining methods of the interface. These are mostly getters and setters,
have a look in one of the existing tokens (for example
Neos\Flow\Security\Authentication\Token\UsernamePassword), if you need more
information.

Tip

You can inherit from the AbstractToken class, which will most likely have a lot of the
methods already implemented in a way you need them.

Authentication provider

After that you’ll have to implement your own authentication mechanism by providing a class,
that implements the interface
Neos\Flow\Security\Authentication\AuthenticationProviderInterface:

	In the constructor you will get the name, that has been configured for the provider and
an optional options array. Basically you can decide on your own which options you need
and how the corresponding yaml configuration will look like.

	Then there has to be a canAuthenticate() method, which gets an authentication token
and returns a boolean value whether your provider can authenticate that token or not.
Most likely you will call getAuthenticationProviderName() on the token and check,
if it matches the provider name given to you in your provider’s constructor. In
addition to this, the method getTokenClassNames() has to return an array with all
authentication token classes, your provider is able to authenticate.

	All the magic will happen in the authenticate() method, which will get an appropriate
authentication token. Basically you could do whatever you want in this method, the
only thing you’ll have to make sure is to set the correct status (possible values are
defined as constants in the token interface and explained above). If authentication
succeeds you might also want to set an account in the given token, to add some roles
to the current security context. However, here is the recommended way of what should
be done in this method and if you don’t have really good reasons, you shouldn’t
deviate from this procedure.

	Get the credentials provided by the client from the authentication token
(getCredentials())

	Retrieve the corresponding account object from the account repository, which
you should inject into your provider by dependency injection. The repository
provides a convenient find method for this task:
findActiveByAccountIdentifierAndAuthenticationProviderName().

	The credentialsSource property of the account will hold the credentials
you’ll need to compare or at least the information, where these credentials lie.

	Start the authentication process (e.g. compare credentials/call directory service/…).

	Depending on the authentication result, set the correct status in the
authentication token, by calling setAuthenticationStatus().

	Set the account in the authentication token, if authentication succeeded. This
will add the roles of this token to the security context.

Tip

You can inherit from the AbstractProvider class, which will most likely have a lot of the
methods already implemented in a way you need them.

Authorization

This section covers the authorization features of Flow and how those can be leveraged in
order to configure fine grained access rights.

Note

With version 3.0 of Flow the security framework was subject to a major refactoring.
In that process the format of the policy configuration was adjusted in order to gain
flexibility.
Amongst others the term resource has been renamed to privilege and ACLs are
now configured directly with the respective role.
All changes are covered by code migrations, so make sure to run the ./flow core:migrate
command when upgrading from a previous version.

Privileges

In a complex web application there are different elements you might want to protect.
This could be the permission to execute certain actions or the retrieval of certain data that has been
stored in the system.
In order to distinguish between the different types the concept of Privilege Types has been introduced.
Privilege Types are responsible to protect the different parts of an application. Flow provides the two
generic types MethodPrivilege and EntityPrivilege, which will be explained in detail in the sections
below.

Defining Privileges (Policies)

This section will introduce the recommended and default way of connecting authentication
with authorization. In Flow policies are defined in a declarative way. This is very powerful and gives
you the possibility to change the security policy of your application without touching any PHP code.
The policy system deals with two major objects, which are explained below: Roles and Privilege Targets.
All policy definitions are configured in the Policy.yaml files.

Privilege Targets

In general a Privilege Target is the definition pointing to something you want to protect.
It consists of a Privilege Type, a unique name and a matcher expression defining which
things should be protected by this target.

The privilege type defines the nature of the element to protect. This could be the execution of a certain action in your
system, the retrieval of objects from the database, or any other kind of action you want to supervise in your
application.
The following example defines a Privilege Target for the MethodPrivilege type to protect the execution of some
methods.

Example: privilege target definition in the Policy.yaml file

privilegeTargets:

 'Neos\Flow\Security\Authorization\Privilege\Method\MethodPrivilege':

 'Acme.MyPackage:RestrictedController.customerAction':
 matcher: 'method(Acme\MyPackage\Controller\RestrictedController->customerAction())'

 'Acme.MyPackage:RestrictedController.adminAction':
 matcher: 'method(Acme\MyPackage\Controller\RestrictedController->adminAction())'

 'Acme.MyPackage:editOwnPost':
 matcher: 'method(Acme\MyPackage\Controller\PostController->editAction(post.owner == current.userService.currentUser))'

Privilege targets are defined in the Policy.yaml file of your package and are grouped by their respective types,
which are define by the fully qualified classname of the privilege type to be used (e.g.
Neos\Flow\Security\Authorization\Privilege\Method\MethodPrivilege). Besides the type each privilege target is given
a unique name 6 and a so called matcher expression, which would be a pointcut expression in case of the Method
Privilege.

Looking back to the example above, there are three privilege targets defined, matching different methods, which should
be protected. You even can use runtime evaluations to specify method arguments, which have to match when the method is
called.

Roles and privileges

In the section about authentication roles have been introduced. Roles are
attached to a user’s security context by the authentication system, to determine which privileges should be granted to
her. I.e. the access rights of a user are decoupled from the user object itself, making it
a lot more flexible, if you want to change them. In Flow roles are defined in the
Policy.yaml files, and are unique within your package namespace. The full identifier
for a role would be <PackageKey>:<RoleName>.

For the following examples the context is the Policy.yaml file of the Acme.MyPackage package.

Following is an example of a simple policy configuration, that will proclaim the roles
Acme.MyPackage:Administrator, Acme.MyPackage:Customer, and
Acme.MyPackage:PrivilegedCustomer to the system and assign certain
privileges to them.

Example: Simple roles definition in the Policy.yaml file

roles:
 'Acme.MyPackage:Administrator':
 privileges: []

 'Acme.MyPackage:Customer':
 privileges: []

 'Acme.MyPackage:PrivilegedCustomer':
 parentRoles: ['Acme.MyPackage:Customer']
 privileges: []

The role Acme.MyPackage:PrivilegedCustomer is configured as a sub role of
Acme.MyPackage:Customer, for example it will inherit the privileges from the
Acme.MyPackage:Customer role.

Flow will always add the magic Neos.Flow:Everybody role, which you don’t have to
configure yourself. This role will also be present, if no account is authenticated.

Likewise, the magic role Neos.Flow:Anonymous is added to the security context if no user
is authenticated and Neos.Flow:AuthenticatedUser if there is an authenticated user.

Defining Privileges and Permissions

The last step is to connect privilege targets with roles by assigning permissions. Let’s
extends our roles definition accordingly:

Example: Defining privileges and permissions

roles:
 'Acme.MyPackage:Administrator’:
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:RestrictedController.customerAction'
 permission: GRANT
 -
 privilegeTarget: 'Acme.MyPackage:RestrictedController.adminAction'
 permission: GRANT
 -
 privilegeTarget: 'Acme.MyPackage:RestrictedController.editOwnPost'
 permission: GRANT

 'Acme.MyPackage:Customer':
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:RestrictedController.customerAction'
 permission: GRANT

 'Acme.MyPackage:PrivilegedCustomer':
 parentRoles: ['Acme.MyPackage:Customer']
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:RestrictedController.editOwnPost'
 permission: GRANT

This will end up in Administrators being able to call all the methods matched by the
three privilege targets from above. However, Customers are only able to call the customerAction, while
PrivilegedCustomers are also allowed to edit their own posts.
And all this without touching one line of PHP code, isn’t that convenient?

Privilege evaluation

Privilege evaluation is a really complex task, when you think carefully about it. However,
if you remember the following two rules, you will have no problems or unexpected behaviour
when writing your policies:

	If a DENY permission is configured for one of the user’s roles, access will be denied
no matter how many grant privileges there are in other roles.

	If no privilege has been defined for any of the user’s roles, access will be denied implicitly.

This leads to the following best practice when writing policies: Use the implicit deny feature as much as possible!
By defining privilege targets, all matched subjects (methods, entities, etc.) will be denied implicitly. Use GRANT
permissions to whitelist access to them for certain roles. The use of a DENY permission should be the ultimate last
resort for edge cases. Be careful, there is no way to override a DENY permission, if you use it anyways!

Using privilege parameters

To explain the usage of privilege parameters, imagine the following scenario: there is an invoice service which requires
the approval of invoices with an amount greater than 100 Euros. Depending on the invoice amount different roles are
allowed to approve an invoice or not. The respective MethodPrivilege could look like the following:

privilegeTargets:

 'Neos\Flow\Security\Authorization\Privilege\Method\MethodPrivilege':

 'Acme.MyPackage:InvoiceService.ApproveInvoiceGreater100Euros':
 matcher: 'method(Acme\MyPackage\Controller\InvoiceService->approve(invoice.amount > 100))'

 'Acme.MyPackage:InvoiceService.ApproveInvoiceGreater1000Euros':
 matcher: 'method(Acme\MyPackage\Controller\InvoiceService->approve(invoice.amount > 1000))'

roles:
 'Acme.MyPackage:Employee':
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoiceGreater100Euros'
 permission: GRANT
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoiceGreater1000Euros'
 permission: DENY

 'Acme.MyPackage:CEO':
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoiceGreater100Euros'
 permission: GRANT
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoiceGreater1000Euros'
 permission: GRANT

While this example policy is pretty straight forward, you can imagine, that introducing further approval levels will end
up in a lot of specific privilege targets to be created. For this we introduced a concept called privilege parameters.
The following Policy expresses the exact same functionality as above:

privilegeTargets:

 'Neos\Flow\Security\Authorization\Privilege\Method\MethodPrivilege':

 'Acme.MyPackage:InvoiceService.ApproveInvoice':
 matcher: 'method(Acme\MyPackage\Controller\InvoiceService->approve(invoice.amount > {amount}))'
 parameters:
 amount:
 className: 'Neos\Flow\Security\Authorization\Privilege\Parameter\StringPrivilegeParameter'

 roles:
 'Acme.MyPackage:Employee':
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoice'
 parameters:
 amount: 100
 permission: GRANT
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoice'
 parameters:
 amount: 1000
 permission: DENY

 'Acme.MyPackage:CEO':
 privileges:
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoice'
 parameters:
 amount: 100
 permission: GRANT
 -
 privilegeTarget: 'Acme.MyPackage:InvoiceService.ApproveInvoice'
 parameters:
 amount: 1000
 permission: GRANT

As you can see we saved one privilege target definition. The specific amount will not be defined in the privilege target
anymore, but is passed along as parameter with the permission for a specific role. Of course, a privilege target can
have an arbitrary number of parameters, which can be filled by their names within the roles’ privilege configuration.

Internal workings of method invocation authorization (MethodPrivilege)

One of the generic privilege types shipped with Flow is the MethodPrivilege,
which protects the invocation of certain methods. By controlling, which
methods are allowed to be called and which not, it can be globally
ensured, that no unprivileged action will be executed at any time. This
is what you would usually do, by adding an access check at the beginning
of your privileged method. In Flow, there is the opportunity to enforce
these checks without touching the actual method at all. Obviously
Flow’s AOP features are used to realize this completely new perspective
on authorization. If you want to learn more about AOP, please refer to
the corresponding chapter in this reference.

First, let’s have a look at the following sequence diagram to get an overview of what is
happening when an authorization decision is formed and enforced:

[image: How an authorization decision is formed and enforced in Flow]
How an authorization decision is formed and enforced in Flow

As already said, the whole authorization starts with an intercepted method, or in other
words with a method that should be protected and only be callable by privileged users. In
the chapter about AOP you’ve already read, that every method interception is implemented
in a so called advice, which resides in an aspect class. Here we are: the
Neos\Flow\Security\Aspect\PolicyEnforcementAspect. Inside this aspect there is the
enforcePolicy() advice, which hands over to Flow’s authorization components.

The next thing to be called is a security interceptor. This interceptor calls the
authentication manager before it continues with the authorization process, to make sure
that the authentication status is up to date. Then the privilege manager is called,
which has to decide, if calling the intercepted method is granted. If not an
access denied exception is thrown by the security interceptor.

The privilege manager simply checks all MethodPrivileges matching the respective method invocation and evaluates the
permissions according to the privilege evaluation strategy explained in the previous section.

Content security (EntityPrivilege)

To restrict the retrieval of Doctrine entities stored in the database, Flow ships the generic EntityPrivilege.
This privilege type enables you to hide certain entities from certain users. By rewriting the queries issued by the
Doctrine ORM, persisted entities a users is not granted to read, are simply not returned from the database. For the
respective user it looks like these entities are not existing at all.

The following example shows the matcher syntax used for entity privilege targets:

'Neos\Flow\Security\Authorization\Privilege\Entity\Doctrine\EntityPrivilege':

 'Acme.MyPackage.RestrictableEntity.AllEntitiesOfTypeRestrictableEntity':
 matcher: 'isType("Acme\MyPackage\RestrictableEntity")'

 'Acme.MyPackage.HiddenEntities':
 matcher: 'isType("Acme\MyPackage\RestrictableEntity") && TRUE == property("hidden")'

 'Acme.MyPackage.OthersEntities':
 matcher: 'isType("Acme\MyPackage\RestrictableEntity") && !(property("ownerAccount").equals("context.securityContext.account")) && property("ownerAccount") != NULL'

EEL expressions are used to target the respective entities. You have to define the entity type, can match on property
values and use global objects for comparison.

Global objects (by default the current SecurityContext imported as securityContext) are registered in the
Settings.yaml file in aop.globalObjects. That way you can add your own as well.

You also can walk over entity associations to compare properties of related entities. The following examples, taken
from the functional tests, show some more advanced matcher statements:

'Neos\Flow\Security\Authorization\Privilege\Entity\Doctrine\EntityPrivilege':

 'Acme.MyPackage.RelatedStringProperty':
 matcher: 'isType("Acme\MyPackage\EntityA") && property("relatedEntityB.stringValue") == "Admin"'

 'Acme.MyPackage.RelatedPropertyComparedWithGlobalObject':
 matcher: 'isType("Acme\MyPackage\EntityA") && property("relatedEntityB.ownerAccount") != "context.securityContext.account" && property("relatedEntityB.ownerAccount") != NULL'

 'Acme.MyPackage.CompareStringPropertyWithCollection':
 matcher: 'isType("Acme\MyPackage\EntityC") && property("simpleStringProperty").in(["Andi", "Robert", "Karsten"])'

 'Acme.MyPackage.ComparingWithObjectCollectionFromGlobalObjects':
 matcher: 'isType("Acme\MyPackage\EntityC") && property("relatedEntityD").in("context.someGloablObject.someEntityDCollection")'

Warning

When using class inheritance for your entities, entity privileges will only work with the root entity type.
For example, if your entity Acme\MyPackage\EntityB extends Acme\MyPackage\EntityA, the expression
isType("Acme\MyPackage\EntityB") will never match. This is a limitation of the underlying Doctrine filter API.

Warning

Custom Global Objects should implement CacheAwareInterface

If you have custom global objects (as exposed through Neos.Flow.aop.globalObjects) which depend on the current
user (security context), ensure they implement CacheAwareInterface and change depending on the relevant access
restrictions you want to provide.

The cache identifier for the global object will be included in the Security Context Hash, ensuring that the Doctrine
query cache and all other places caching with security in mind will correctly create separate cache entries for the
different access restrictions you want to create.

As an example, if your user has a “company” assigned, and depending on the company, your should only see your
“own” records, you need to: Implement a custom context object, register it in Neos.Flow.aop.globalObjects
and make it implement CacheAwareInterface:

/**
 * @Flow\Scope("singleton")
 */
class UserInformationContext implements CacheAwareInterface
{
 /**
 * @Flow\Inject
 * @var Context
 */
 protected $securityContext;

 /**
 * @Flow\Inject
 * @var PersistenceManagerInterface
 */
 protected $persistenceManager;

 /**
 * @return Company
 */
 public function getCompany() {
 $account = $this->securityContext->getAccount();
 $company = // find your $company depending on the account;
 return $company;
 }

 /**
 * @return string
 */
 public function getCacheEntryIdentifier()
 {
 $company = $this->getCompany();

 return $this->persistenceManager->getIdentifierByObject($company);
 }

Internal workings of entity restrictions (EntityPrivilege)

Internally the Doctrine filter API is used to add additional SQL constraints to all queries issued by the ORM against
the database. This also ensures to rewrite queries done while lazy loading objects, or DQL statements. The responsible
filter class Neos\Flow\Security\Authorization\Privilege\Entity\Doctrine\SqlFilter uses various
ConditionGenerators to create the needed SQL. It is registered als Doctrine filter with the name
Flow_Security_Entity_Filter in Flow’s Settings.yaml file.

The evaluation of entity restrictions is analog to the MethodPrivilege from above. This means entities matched by a
privilege target are implicitly denied and are therefore hidden from the user. By adding a grant permission for a
privilege target, this role will be able to retrieve the respective objects from the database. A DENY permission will
override any GRANT permission, nothing new here. Internally we add SQL where conditions excluding matching entities for
all privilege targets that are not granted to the current user.

Warning

Custom SqlFilter implementations - watch out for data privacy issues!

If using custom SqlFilters, you have to be aware that the SQL filter is cached by doctrine, thus your SqlFilter might
not be called as often as you might expect. This may lead to displaying data which is not normally visible to the user!

Basically you are not allowed to call setParameter inside addFilterConstraint; but setParameter must be called before
the SQL query is actually executed. Currently, there’s no standard Doctrine way to provide this; so you manually can receive
the filter instance from $entityManager->getFilters()->getEnabledFilters() and call setParameter() then.

Alternatively, you can use the mechanism from above, where you register a global context object in Neos.Flow.aop.globalObjects
and use it to provide additional identifiers for the caching; effectively seggregating the Doctrine cache some more.

Creating your custom privilege

Creating your own privilege type usually has one of the two purposes:
You want to define the existing privileges with your own domain specific language (DSL).
There is a completely new privilege target (neither method calls, nor persisted entities) that needs to be protected.

The first use case can be implemented by inheriting from one of the existing privilege classes. The first step to change
the expression syntax is to override the method matchesSubject(...). This method gets a privilege subject object
(e.g. a JoinPoint for method invocations) and decides whether this privilege (defined by the matcher expression) matches
this subject by returning a boolean. In this method you can therefore implement your custom matching logic, working with
your very own domain specific matcher syntax. Of course the existing EEL parser can be used to realize DSLs, but in the
end thats totally up to you what to use here.

Tip

To use privilege parameters (see section above), you can use getParsedMatcher() from
the AbstractPrivilege.

The second step is dependant on the privilege type you are extending. This is the implementation of the actual
enforcement of the permissions defined by this type.

In case of the MethodPrivilege, you’ll also have to override getPointcutFilterComposite() to provide the AOP
framework with the needed information about which methods have to be intercepted during compile time.

In case of the EntityPrivilege permissions are not enforced directly with the entities, but by changing SQL queries.
One could says the database is responsible to enforce the rules by evaluating the SQL. The additional SQL is returned
by the EnitiyPrivilege’s method getSqlConstraint(), which of course can be overriden to support an alternative
matcher syntax.

Tip

You might still want to use the existing SQL generators, as this is where the hard lowlevel
magic is happening. You can compose your constraint logic by these generator objects in a
nice programmatical way.

Coming back to the second use case to create your completely custom privilege type, you also have to implement a
privilege class with the two functionalities from above:

	Create your custom privilege subject as a wrapper object for whatever things you want to protect. Corresponding to
this object you’ll have to implement the matchesSubject(...) method of your custom privilege class.

	Additionally the permissions have to be enforced. This is totally up to your privilege type, or in other words your
use case. Feel free to add custom methods to your privilege class to help you enforcing the new privilege (equivalent
to generation of SQL or pointcut filters in the entity or method privilege type, respectively).

Retrieving permission and status information

Besides enforcing the policy it is also important to find out about permissions beforehand, to be able to react on not
permitted actions before permissions are actually enforced. To find out about permissions, the central privilege
manager (Neos\Flow\Security\Authorization\PrivilegeManager) can be asked for different things:

	If the user with the currently authenticated roles is granted for a given subject: isGranted(...). The subject
depends on the privilege type, which bring their specific privilege subject implementations. In case of the
MethodPrivilege this would be the concrete method invocation (JoinPoint).

	If the user with the currently authenticated roles is granted for a given privilege target (no matter which privilege
type it is): isPrivilegeTargetGranted(...)

	The privilege manager also provides methods to calculate the result for both types of information with different
roles. By this one can check what would happen if the user had different roles than currently authenticated:
isGrantedForRoles(...) and isPrivilegeTargetGrantedForRoles(...)

Fluid (view) integration

As already stated it is desirable to reflect the policy rules in the view, e.g. a button or link to delete a customer
should not be shown, if the user has not the privilege to do so. If you are using the recommended Fluid templating
engine, you can simply use the security view helpers shipped with Fluid. Otherwise you would have to ask the privilege
manager - as stated above - for the current privilege situation and implement the view logic on your own. Below you’ll
find a short description of the available Fluid view helpers.

ifAccess view helper

This view helper implements an ifAccess/else condition, have a look at the following
example, which should be more or less self-explanatory:

Example: the ifAccess view helper

<f:security.ifAccess privilegeTarget="somePrivilegeTargetIdentifier">
 This is being shown in case you have access to the given privilege target
</f:security.ifAccess>

<f:security.ifAccess privilegeTarget="somePrivilegeTargetIdentifier">
 <f:then>
 This is being shown in case you have access.
 </f:then>
 <f:else>
 This is being displayed in case you do not have access.
 </f:else>
</f:security.ifAccess>

As you can imagine, the main advantage is, that the view will automatically reflect the
configured policy rules, without the need of changing any template code.

ifHasRole view helper

This view helper is pretty similar to the ifAccess view helper, however it does not
check the access privilege for a given privilege target, but the availability of a certain role.
For example you could check, if the current user has the Administrator role assigned:

Example: the ifHasRole view helper

<f:security.ifHasRole role="Administrator">
 This is being shown in case you have the Administrator role (aka role).
</f:security.ifHasRole>

<f:security.ifHasRole role="Administrator">
 <f:then>
 This is being shown in case you have the role.
 </f:then>
 <f:else>
 This is being displayed in case you do not have the role.
 </f:else>
</f:security.ifHasRole>

The ifHasRole view helper will automatically add the package key from the current controller
context. This means that the examples above will only render the ‘then part’ if the user has the
Administrator role of the package your template belongs to.
If you want to check for a role from a different package you can use the full role identifier or
specify the package key with the packageKey attribute:

Example: check for a role from a different package

<f:security.ifHasRole role="Acme.SomeOtherPackage:Administrator">
 This is being shown in case you have the Administrator role (aka role).
</f:security.ifHasRole>

<f:security.ifHasRole role="Administrator" packageKey="Acme.SomeOtherPackage">
 This is being shown in case you have the Administrator role (aka role).
</f:security.ifHasRole>

ifAuthenticated view helper

There are cases where it doesn’t matter which permissions or roles a user has, it is simply needed to differentiate
between authenticated users and anonymous users in general. In these cases the ifAuthenticated view helper will be
the method of choice:

Example: check if a user is authenticated

<f:security.ifAuthenticated>
 <f:then>
 This is being shown in case a user is authenticated
 </f:then>
 <f:else>
 This is being displayed in case no user is authenticated
 </f:else>
</f:security.ifAuthenticated>
</code>

Commands to analyze the policy

Flow ships different commands to analyze the configured policy:

	security:showunprotectedactions: This command lists all controller actions not covered by any privilege target in the
system. It helps to find out which actions will be publicly available without any security interception in place.

	security:showmethodsforprivilegetarget: To test matchers for method privilege, this command lists all methods covered
by a given privilege target. Of course this command can only be used with privilege targets of type MethodPrivilege.

	security:showeffectivepolicy: This command lists the effective permissions for all available privilege targets of the
given type (entity or method) in the system. To evaluate these permission the respective roles have to be passed to the
command.

Application firewall

Besides the privilege powered authorization, there is another line of defense: the filter
firewall. This firewall is triggered directly when a request arrives in the MVC dispatcher.
The request is analyzed and can be blocked/filtered out. This adds a second
level of security right at the beginning of the whole framework run, which means
that a minimal amount of potentially insecure code will be executed before that.

[image: Blocking request with Flow's filter firewall]
Blocking request with Flow’s filter firewall

Blocking requests with the firewall is not a big thing at all, basically a request filter object is
called, which consists of a request pattern and a security interceptor. The simple rule
is: if the pattern matches on the request, the interceptor is invoked.
Request Patterns are also used by the authentication components and are explained
in detail there. Talking about security interceptors: you already know the policy
enforcement interceptor, which triggers the authorization process. Here is a table of
available interceptors, shipped with Flow:

Note

Of course you can implement your own interceptor. Just make sure to implement the
interface: Neos\Flow\Security\Authorization\InterceptorInterface.

Flow’s built-in security interceptors

	Security interceptor

	Invocation action

	PolicyEnforcement

	Triggers the authorization process as
described one section above.

	RequireAuthentication

	Calls the authentication manager to
authenticate all active tokens for
the current request.

Of course you are able to configure as many request filters as
you like. Have a look at the following example to get an idea how a
firewall configuration will look like:

Example: Firewall configuration in the Settings.yaml file

Neos:
 Flow:
 security:
 firewall:
 rejectAll: FALSE

 filters:
 'Some.Package:AllowedUris':
 pattern: 'Uri'
 patternOptions:
 'uriPattern': '\/some\/url\/.*'
 interceptor: 'AccessGrant'
 'Some.Package:BlockedUris':
 pattern: 'Uri'
 patternOptions:
 'uriPattern': '\/some\/url\/blocked.*'
 interceptor: 'AccessDeny'
 'Some.Package:BlockedHosts':
 pattern: 'Host'
 patternOptions:
 'hostPattern': 'static.mydomain.*'
 interceptor: 'AccessDeny'
 'Some.Package:AllowedIps':
 pattern: 'Ip'
 patternOptions:
 'cidrPattern': '192.168.178.0/24'
 interceptor: 'AccessGrant'
 'Some.Package:CustomPattern':
 pattern: 'Acme\MyPackage\Security\MyOwnRequestPattern'
 patternOptions:
 'someOption': 'some value'
 'someOtherOption': 'some other value'
 interceptor: 'Acme\MyPackage\Security\MyOwnSecurityInterceptor'

As you can see, you can easily use your own implementations for request patterns and
security interceptors.

Note

You might have noticed the rejectAll option. If this is set to yes,
only request which are explicitly allowed by a request filter will be able
to pass the firewall.

CSRF protection

A special use case for the filter firewall is CSRF protection. A custom csrf filter is installed and active by default.
It checks every non-safe request (requests are considered safe, if they do not manipulate any persistent data) for a
CSRF token and blocks the request if the token is invalid or missing.

Note

Besides safe requests csrf protection is also skipped for requests with an anonyous
authentication status, as these requests are considered publicly callable anyways.

The needed token is automatically added to all URIs generated in Fluid forms, sending data via POST, if any account is
authenticated. To add CSRF tokens to URIs, e.g. used for AJAX calls, Fluid provides a special view helper, called
Security.CsrfTokenViewHelper, which makes the currently valid token available for custom use in templates. In
general you can retrieve the token by callding getCsrfProtectionToken on the security context.

Tip

There might be actions, which are considered non-safe by the framework but still cannot be
protected by a CSRF token (e.g. authentication requests, send via HTTP POST). For these
special cases you can tag the respective action with the @Flow\SkipCsrfProtection
annotation. Make sure you know what your are doing when using this annotation, it might
decrease security for your application when used in the wrong place!

Channel security

Currently channel security is not a specific feature of Flow. Instead you have to make sure to transfer sensitive
data, like passwords, over a secure channel. This is e.g. to use an SSL connection.

Cryptography

Hash service

Creating cryptographically secure hashes is a crucial part to many security related tasks. To make sure the hashes are
built correctly Flow provides a central hash service Neos\Flow\Security\Cryptography\HashService, which
brings well tested hashing algorithms to the developer. We highly recommend to use this service to make sure hashes are
securely created.

Flow’s hash services provides you with functions to generate and validate HMAC hashes for given strings, as well as
methods for hashing passwords with different hashing strategies.

RSA wallet service

Flow provides a so called RSA wallet service, to manage public/private key encryptions. The idea behind this
service is to store private keys securely within the application by only exposing the public key via API. The default
implementation shipped with Flow is based on the openssl functions shipped with PHP:
Neos\Flow\Security\Cryptography\RsaWalletServicePhp.

The service can either create new key pairs itself, while returning the fingerprint as identifier for this keypair.
This identifier can be used to export the public key, decrypt and encrypt data or sign data and verify signatures.

To use existing keys the following commands can be used to import keys to be stored and used within the wallet:

	security:importpublickey

	security:importprivatekey

	1

	The details about the PersistedUsernamePasswordProvider provider are explained
below, in the section about Authentication mechanisms shipped with Flow.

	2

	If you don’t know any credentials, you’ll have to read the section about
Account management

	3

	Well, it holds them in member variables, but lies itself in the security context,
which is a class configured as scope session.

	4

	The specification can be downloaded from
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ciq. The implementation of
this specification resides in the “Party” package, which is part of the official Neos
distribution.

	5

	The AccountRepository provides a convenient find method called
findActiveByAccountIdentifierAndAuthenticationProviderName()
for this task.

	6

	By convention the privilege target identifier is to be prefixed with the respective package key to avoid
ambiguity.

Internationalization & Localization Framework

Internationalization (also known as i18n) is the process of designing software so that it
can be easily (i.e. without any source code modifications) adapted to various languages
and regions. Localization (also known as L10n) is the process of adapting
internationalized software for a specific language or region (e.g. by translating text,
formatting date or time).

Basics

Locale class

Instances of \Neos\Flow\I18n\Locale class are fundamental for the whole i18n and
L10n functionality. They are used to specify what language should be used for translation,
how date and time should be formatted, and so on. They can be treated as simple wrappers
for locale identifiers (like de or pl_PL). Many methods from the i18n framework accept
Locale objects as a optional parameter - if not provided, the default Locale instance
for a Flow installation will be used.

You can create a Locale object for any valid locale identifier (specified by RFC
4646), even if it is not explicitly meant to be supported by the current Flow
installation (i.e. there are no localized resources for this locale). This can be useful,
because Flow uses the Common Locale Data Repository (CLDR), so each Flow installation
knows how to localize numbers, date, time and so on to almost any language and region on
the world.

Additionally Flow creates a special collection of available Locale objects. Those can
either be configured explicitly in settings via Neos.Flow.i18n.availableLocales or they
are automatically generated by scanning the filesystem for any localized resources. You can
use the i18n service API to obtain these verified Locale objects.

Note

You can configure which folders Flow should scan for finding available locales through
the Neos.Flow.i18n.scan.includePaths setting. This is useful to restrict the scanning
to specific paths when you have a big file structure in your package Resources.
You can also blacklist folders through Neos.Flow.i18n.scan.excludePatterns.
By default the Public and Private/Translations folders, except ‘node_modules’,
‘bower_components’ and any folder starting with a dot will be scanned.

Locales are organized in a hierarchy. For example, en is a parent of en_US which is a
parent of en_US_POSIX. Thanks to the hierarchical relation resources can be
automatically shared between related resources. For example, when you request a foobar
item for en_US locale, and it does not exist, but the item does exist for the en
locale, it will be used.

Common Locale Data Repository

Flow comes bundled with the CLDR (Common Locale Data Repository). It’s an Unicode
project with the aim to provide a systematic representation of data used for the
localization process (like formatting numbers or date and time). The i18n framework
provides a convenient API to access this data.

Note

For now Flow covers only a subset of the CLDR data. For example, only the Gregorian
calendar is supported for date and time formatting or parsing.

Detecting user locale

The Detector class can be used for matching one of the available locales with locales
accepted by the user. For example, you can provide the AcceptLanguage HTTP header to the
detectLocaleFromHttpHeader() method, which will analyze the header and return the best
matching Locale object. Also methods exist which accept a locale identifier or
template Locale object as a parameter and will return a best match.

Translating text

Translator class

The \Neos\Flow\I18n\Translator class is the central place for the translation
related functionality. Two translation modes can be used: translating by original label or
by ID. Translator also supports plural forms and placeholders.

For translateByOriginalLabel() you need to provide the original (untranslated, source)
message to be used for searching the translated message. It makes view templates more
readable.

translateById() expects you to provide the systematic ID (like user.notRegistered)
of a message.

Both methods accept the following optional arguments:

	arguments - array of values which will replace corresponding placeholders

	quantity - integer or decimal number used for finding the correct plural form

	sourceName - name of source catalog to read the translation from.

	packageKey of the package the source catalog is contained in.

Hint

Translation by label is very easy and readable, but if you ever want to change the
original text, you are in trouble. The use of IDs gives you more flexibility in that
respect.

Another issue: some labels do not contain their context, like “Name”. What is meant
here, a person’s name or a category label? This can be solved by using IDs that convey
the context (note that both could be “Name” in the final output):

	party.person.fullName

	blog.category.name

We therefore recommend to use translationById() in your code.

Plural forms

The Translator supports plural forms. English has only two plural forms: singular
and plurals but the CLDR defines six plural forms: zero, one, two, few, many,
other. Though english only uses one and other, different languages use more forms
(like one, few, and other for Polish) or less forms (like only other for
Japanese).

Sets of rules exist for every language defining which plural form should be used for a
particular quantity of a noun. If no rules match, the implicit other rule is assumed.
This is the only form existing in every language.

If the catalogs with translated messages define different translations for particular
plural forms, the correct form can be obtained by the Translator class. You just need
to provide the quantity parameter - an integer or decimal number which specifies the
quantity of a noun in the sentence being translated.

Placeholders

Translated messages (labels) can contain placeholders - special markers denoting he place
where to insert a particular value and optional configuration on how to format it.

The syntax of placeholders is very simple:

{id[,formatter[,attribute1[,attribute2...]]]}

where:

	id is an integer used to index the arguments to insert

	formatter (optional) is a name of one of the Formatters to use for formatting the argument
(if no formatter is given the provided argument will be cast to string)

	attributes (optional) are strings directly passed to the Formatter. What they do
depends on the concrete Formatter which is being used, but generally they are used
to specify formatting more precisely.

Some examples:

{0}
{0,number,decimal}
{1,datetime,time,full}

	The first example would output the first argument (indexing starts with 0), simply
string-casted.

	The second example would use NumberFormatter (which would receive one attribute:
decimal) to format first argument.

	The third example would output the second argument formatted by the
DatetimeFormatter, which would receive two attributes: time and full (they
stand for format type and length, accordingly).

Formatters

A Formatter is a class implementing the
\Neos\Flow\I18n\Formatter\FormatterInterface. A formatter can be used to format a
value of particular type: to convert it to string in locale-aware manner. For example, the
number 1234.567 would be formatted for French locale as 1 234,567. It is possible to
define more elements than just the position and symbols of separators.

Together with placeholders, formatters provide robust and easy way to place formatted
values in strings. But formatters can be used directly (i.e. not in placeholder, but in
your class by injection), providing you more control over the results of formatting.

The following formatters are available in Flow by default:

	\Neos\Flow\I18n\Formatter\NumberFormatter

	Formats integers or floats in order to display them as strings in localized manner.
Uses patterns obtained from CLDR for specified locale (pattern defines such elements
like minimal and maximal size of decimal part, symbol for decimal and group separator,
etc.). You can indirectly define a pattern by providing format type (first additional
attribute in placeholder) as decimal or percent. You can also manually set the
pattern if you use this class directly (i.e. not in placeholder, but in your class by
injection).

	\Neos\Flow\I18n\Formatter\DatetimeFormatter

	Formats date and / or time part of PHP \DateTime object. Supports most of very
extensive pattern syntax from CLDR. Has three format types: date, time, and
datetime. You can also manually set the pattern if you use this class directly.

The following parameters are generally accepted by Formatters’ methods:

	locale - formatting result depends on the localization, which is defined by provided
Locale object

	formatLength (optional) - CLDR provides different formats for full, long,
medium, short, and default length

Every formatter provides few methods, one for each format type. For example,
NumberFormatter has methods formatDecimalNumber() - for formatting decimals and
integers - and formatPercentNumber() - for percentage (parsed value is automatically
multiplied by 100).

You can create your own formatter class which will be available for use in
placeholders. Just make sure your class implements the
\Neos\Flow\I18n\Formatter\FormatterInterface. Use the fully qualified class name,
without the leading backslash, as formatter name:

{0,Acme\Foobar\Formatter\SampleFormatter}

Translation Providers

Translation providers are classes implementing the TranslationProviderInterface. They
are used by the Translator class for accessing actual data from translation files
(message catalogs).

A TranslationProvider’s task is to read (understand) the concrete format of catalogs.
Flow comes with one translation provider by default: the XliffTranslationProvider. It
supports translations stored in XLIFF message catalogs, supports plural forms, and
both translation modes.

You can create and use your own translation provider which reads the file format you need,
like PO, YAML or even PHP arrays. Just implement the interface mentioned earlier and
use the Objects.yaml configuration file to set your translation provider to be injected
into the Translator.
Please keep in mind that you have to take care of overrides yourself as this is within the
responsibilities of the translation provider.

Fluid ViewHelper

There is a TranslateViewHelper for Fluid. It covers all Translator
features: it supports both translation modes, plural forms, and placeholders.
In the simplest case, the TranslateViewHelper can be used like this:

<f:translate id="label.id"/>

It will output the translation with the ID “label.id” (corresponding to the
trans-unit id in XLIFF files).

The TranslateViewHelper also accepts all optional parameters the Translator does.

<f:translate id="label.id" source="someLabelsCatalog" arguments="{0: 'foo', 1: '99.9'}"/>

It will translate the label using someLabelsCatalog. Then it will insert string casted
value “foo” in place of {0} and localized formatted 99.9 in place of {1,number}.

Translation by label is also possible:

<f:translate>Unregistered User</f:translate>

It will output the translation assigned to user.unregistered key.

When the translation for particular label or ID is not found, value placed between
<f:translate> and </f:translate> tags will be displayed.

Localizing validation error messages

Flow comes with a bundle of translations for all basic validator error messages. To make use
of these translations, you have to adjust your templates to make use of the TranslateViewHelper.

<f:validation.results for="{property}">
 <f:for each="{validationResults.errors}" as="error">
 {error -> f:translate(id: error.code, arguments: error.arguments, package: 'Neos.Flow', source: 'ValidationErrors')}
 </f:for>
</f:validation.results>

If you want to change the validation messages, you can use your own package and override the labels there.
See the “XLIFF file overrides” section below.

Tip

If you want to have different messages depending on the property, for example if you want to
be more elaborate about specific validation errors depending on context, you could add the property
to the translate key and provide your own translations.

Localizing resources

Resources can be localized easily in Flow. The only thing you need to do is to put a
locale identifier just before the extension. For example, foobar.png can be localized as
foobar.en.png, foobar.de_DE.png, and so on. This works with any resource type when
working with the Flow ResourceManagement.

Just use the getLocalizedFilename() of the i18n Service singleton to obtain a
localized resource path by providing a path to the non-localized file and a Locale
object. The method will return a path to the best matching localized version of the file.

Fluid ViewHelper

The ResourceViewHelper will by default use locale-specific versions of any resources
you ask for. If you want to avoid that you can disable that:

{f:uri.resource(path: 'header.png', localize: 0)}

Validating and parsing input

Validators

A validator is a class implementing ValidatorInterface and is used by the Flow
Validation Framework for assuring correctness of user input. Flow provides two validators
that utilize i18n functionality:

	\Neos\Flow\Validation\Validator\NumberValidator

	Validates decimal and integer numbers provided as strings (e.g. from user’s input).

	\Neos\Flow\Validation\Validator\DateTimeValidator

	Validates date, time, or both date and time provided as strings.

Both validators accept the following options: locale, strictMode, formatType,
formatLength.

These validators are working on top of the parsers API. Please refer to the Parsers
documentation for details about functionality and accepted options.

Parsers

A Parsers’ task is to read user input of particular type (e.g. number, date, time), with
respect to the localization used and return it in a form that can be further processed.
The following parsers are available in Flow:

	\Neos\Flow\I18n\Parser\NumberParser

	Accepts strings with integer or decimal number and converts it to a float.

	\Neos\Flow\I18n\Parser\DatetimeParser

	Accepts strings with date, time or both date and time and returns an array with date /
time elements (like day, hour, timezone, etc.) which were successfully recognized.

The following parameters are generally accepted by parsers’ methods:

	locale - formatting results depend on the localization, which is defined by the
provided Locale object

	formatLength - CLDR provides different formats for full, long, medium, short,
and default length

	strictMode - whether to work in strict or lenient mode

Parsers are complement to Formatters. Every parser provides a few methods, one for each
format type. Additionally each parser has a method which accepts a custom format
(pattern). You can provide your own pattern and it will be used for matching input. The
syntax of patterns depends on particular parser and is the same for a corresponding
formatter (e.g. NumberParser and NumberFormatter support the same pattern syntax).

Parsers can work in two modes: strict and lenient. In strict mode, the parsed value
has to conform the pattern exactly (even literals are important). In lenient mode, the
pattern is only a “base”. Everything that can be ignored will be ignored, some
simplifications in the pattern are done. The parser tries to do it’s best to read the
value.

XLIFF message catalogs

The primary source of translations in Flow are XLIFF message catalogs. XLIFF [http://en.wikipedia.org/wiki/XLIFF], the XML Localisation Interchange File Format is
an OASIS-blessed [https://www.oasis-open.org/committees/xliff] standard format for
translations.

Note

In a nutshell an XLIFF document contains one or more <file> elements. Each file
element usually corresponds to a source (file or database table) and contains the source
of the localizable data. Once translated, the corresponding localized data for one, and
only one, locale is added.

Localizable data are stored in <trans-unit> elements. The <trans-unit> contains
a <source> element to store the source text and a (non-mandatory) <target>
element to store the translated text.

File locations and naming

Each Flow package may contain any number of XLIFF files. The location for these files is
the Resources/Private/Translations folder. The files there can be named at will,
but keep in mind that Main is the default catalog name. The target locale is then added
as a directory hierarchy in between. The minimum needed to provide message catalogs for the
en and de locales thus would be:

Resources/
 Private/
 Translations/
 en/
 Main.xlf
 de/
 Main.xlf

XLIFF file creation

It is possible to create initial translation files for a given language. With Flow command

./flow kickstart:translation --package-key Some.Package --source-language-key en --target-language-keys "de,fr"

the files for the default language english in the package Some.Package will be created as well as the translation
files for german and french. Already existing files will not be overwritten. Translations that do not yet exist are
generated based on the default language.

A minimal XLIFF file looks like this:

<?xml version="1.0"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
 <file original="" source-language="da" target-language="fr" datatype="plaintext">
 <body>
 <trans-unit id="danish.celebrity">
 <source>Skarhøj</source>
 <target>Sarkosh</target>
 </trans-unit>
 </body>
 </file>
</xliff>

If possible you should set up your editor to use the XLIFF 1.2 strict schema to validate
the files you are working on.

Note

When using translationById() the framework will check the catalog’s source language
against the currently needed locale and use the <source> element if no <target>
element is found. This eliminates the need to duplicate messages in catalogs where
source and target language are the same.

But you may still ask yourself do I really need to duplicate all the strings
in XLIFF files? The answer is you should. Using target allows to fix typos
or change wording without breaking translation by label for all other languages.

How to create meaningful XLIFF ids

When using the recommended way of translating by id, it is even more important to use
meaningful identifiers. Our suggestion is to group identifiers and use dot notation
to build a hierarchy that is meaningful and intuitive:

settings.account.keepLoggedIn
settings.display.compactControls
book.title
book.author
…

Labels may contain placeholders to be replaced with given arguments during
output. Earlier we saw an example use of the TranslateViewHelper:

<f:translate id="label.id" arguments="{0: 'foo', 1: '99.9'}"/>

The corresponding XLIFF files will contain placeholders in the source and target strings:

<trans-unit id="some.label">
 <source>Untranslated {0} and {1,number}</source>
 <target>Übersetzung mit {1,number} und {0}</target>
</trans-unit>

As you can see, placeholders may be reordered in translations if needed.

Plural forms in XLIFF files

Plural forms are also supported in XLIFF. The following example defines a string
in two forms that will be used depending on the count:

<group id="some.label" restype="x-gettext-plurals">
 <trans-unit id="some.label[0]">
 <source>This is only {0} item.</source>
 <target>Dies ist nur {0} Element.</target>
 </trans-unit>
 <trans-unit id="some.label[1]">
 <source>These are {0} items.</source>
 <target>Dies sind {0} Elemente.</target>
 </trans-unit>
</group>

Please be aware that the number of the available plural forms depends on the language!
If you want to find out which plural forms are available for a locale you can have a
look at Neos.Flow/Resources/Private/I18n/CLDR/Sources/supplemental/plurals.xml

XLIFF file translation

To translate XLIFF files you can use any text editor, but translation is a lot easier
using one the available translation tools. To name two of them: Virtaal is a free and
open-source tool for offline use and Pootle (both from the Translate Toolkit [http://toolkit.translatehouse.org] project) is a web-based
translation server.

XLIFF can also easily be converted to PO file format, edited by well known PO editors
(like Poedit, which supports plural forms), and converted back to XLIFF format. The
xliff2po and po2xliff tools from the Translate Toolkit project can convert without
information loss.

XLIFF file overrides

As of Flow 4.2, XLIFF files are no longer solely identified by their location in the file system.
Instead, the <file>’s product-name and original attributes are evaluated to the known
package and source properties, if given. The actual location in the file system is only taken
into account if this information is missing and mainly for backwards compatibility.

This allows for an override mechanism, which comes in two levels:

Package-based overrides

Translation files are assembled by collecting labels along the composer dependency graph. This means that
as long a package depends (directly or indirectly) on another package, it can override or enrich the other package’s
XLIFF files by using the other package’s product-name and original values.

Note

If you have trouble overriding another package’s translations, please check your composer.json if you correctly
declared that package as a dependency.

Global translations overrides

In case translations are provided by another source than packages (e.g. via import from a third party system),
a global translation path can be declared and is evaluated with highest priority in that it overrides all translations
provided by packages. The default value for this is Data/Translations and can be changed via the configuration
parameter

Neos:
 Flow:
 i18n:
 globalTranslationPath: '%FLOW_PATH_DATA%Translations/'

Example

Packages/Framework/Neos.Flow/Resources/Private/Translations/en/ValidationErrors.xlf

<file original="" product-name="Neos.Flow" source-language="en" datatype="plaintext">
 <body>
 <trans-unit id="1221551320" xml:space="preserve">
 <source>Only regular characters (a to z, umlauts, ...) and numbers are allowed.</source>
 </trans-unit>
 </body>
</file>

Packages/Application/Acme.Package/Resources/Private/Translations/en/ValidationErrors.xlf

<file original="ValidationErrors" product-name="Neos.Flow" source-language="en" datatype="plaintext">
 <body>
 <trans-unit id="1221551320" xml:space="preserve">
 <source>Whatever translation more appropriate to your domain comes to your mind.</source>
 </trans-unit>
 </body>
</file>

Note

In case of undetected labels, please make sure the original and product-name attributes are properly set
(or not at all, if the file resides in the matching directory). Since these fields are used to detect overrides,
they are now meaningful and cannot be filled arbitrarily any more.

Error and Exception Handling

Flow reports applications errors by throwing specific exceptions. Exceptions are
structured in a hierarchy which is based on base exception classes for each
component. By default, PHP catchable errors, warnings and notices are automatically
converted into exceptions in order to simplify the error handling.

In case an exception cannot be handled by the application, a central exception
handler takes over to display or log the error and shut down the application
gracefully.

Throwing Exceptions

Applications should throw exceptions which are based on one of the exception classes
provided by Flow. Each exception should be identified by a unique error code which
is, by convention, the unix timestamp of the point in time when the developer
implemented the code throwing the exception:

if ($somethingWentReallyWrong) {
 throw new SomethingWentWrongException('An exception message', 1347145643);
}

Exceptions can contain an HTTP status code which is sent as a corresponding response
header. The status code is simply set by defining a property with the respective
value assigned:

class SomethingWasNotFoundException extends \Neos\Flow\Exception {

/**
 * @var integer
 */
protected $statusCode = 404;

}

Exception Handlers

Flow comes with two different exception handlers:

	the DebugExceptionHandler displays a big amount of background information,
including a call stack, in order to simplify debugging of the exception cause.
The output might contain sensitive data because method arguments are displayed
in the backtrace.

	the ProductionExceptionHandler displays a neutral message stating that an
error occurred. Apart from a reference code no information about the nature of
the exception or any parameters is disclosed.

By default, the DebugExceptionHandler is used in Development context and the
ProductionExceptionHandler is in charge in the Production context.

The exception handler to be used can be configured through an entry in Settings.yaml:

Neos:
 Flow:
 error:
 exceptionHandler:
 # Defines the global, last-resort exception handler.
 # The specified class must implement \Neos\Flow\Error\ExceptionHandlerInterface
 className: 'Neos\Error\Messages\ProductionExceptionHandler'

Reference Code

In a production context, the exception handler should, for security reasons, not
reveal any information about the inner workings and data of the application. In
order to be able to track down the root of the problem, Flow generates a unique
reference code when an exception is thrown. It is safe to display this reference
code to the user who can, in turn, contact the administrators of the application
to report the error. At the server side, detailed information about the exception
is stored in a file named after the reference code.

You will find report files for exceptions thrown in Data/Logs/Exceptions/. In
some rare cases though, when Flow is not even able to write the respective log
file, no details about the exception can be provided.

[image: Exception screen with reference code]
Exception screen with reference code

Error Handler

Flow provides a central error handler which jumps in if a PHP error, warning or
notice occurs. Instead of displaying or logging the error right away, it is
transformed into an ErrorException.

A configuration option in Settings.yaml allows for deciding which error levels
should be converted into exceptions. All other errors are silently ignored:

Neos:
 Flow:
 error:
 errorHandler:
 # Defines which errors should result in an exception thrown - all other error
 # levels will be silently ignored. Only errors that can be handled in an
 # user-defined error handler are affected, of course.
 exceptionalErrors: ['%E_USER_ERROR%', '%E_RECOVERABLE_ERROR%']

Custom Error Views

In order to allow customized, specifically looking error templates; even depending on the
nature of an error; Flow provides configurable rendering groups. Each such rendering group
holds information about what template to use, what text information should be provided,
and finally, what HTTP status codes or what Exception class names each rendering group is
responsible for.

An example configuration could look like in the following Settings.yaml excerpt:

Neos:
 Flow:
 error:
 exceptionHandler:
 defaultRenderingOptions: []

 renderingGroups:

 notFoundExceptions:
 matchingStatusCodes: [404]
 options:
 templatePathAndFilename: 'resource://Neos.Flow/Private/Templates/Error/Default.html'
 variables:
 errorDescription: 'Sorry, the page you requested was not found.'

 databaseConnectionExceptions:
 matchingExceptionClassNames: ['Neos\Flow\Persistence\Doctrine\DatabaseConnectionException']
 options:
 templatePathAndFilename: 'resource://Neos.Flow/Private/Templates/Error/Default.html'
 variables:
 errorDescription: 'Sorry, the database connection couldn''t be established.'

	defaultRenderingOptions:

	this carries default options which can be overridden by the options key of a particular
rendering group; see below.

notFoundExceptions and databaseConnectionExceptions are freely chosen, descriptive
key names, their actual naming has no further implications.

	matchingStatusCodes:

	an array of integer values what HTTP status codes the rendering group is for

	matchingExceptionClassNames:

	an array of string values what Exception types the rendering group is for. Keep in mind that, as always
the class name must not contain a leading slash, but must be fully qualified, of course.

options:

	logException:

	a boolean telling Flow to log the exception and write a backtrace file. This is
on by default but switched off for exceptions with a 404 status code

	renderTechnicalDetails:

	a boolean passed to the error template during rendering and used in the default error
template to include more details on the error at hand. Defaults to FALSE but is set to TRUE
for development context.

	templatePathAndFilename:

	a resource string to the (Fluid) filename to use

	layoutRootPath:

	a resource string to the layout root path

	partialRootPath:

	a resource string to the partial root path

	format:

	the format to use, for example html or json, if appropriate

	variables

	an array of additional, arbitrary variables which can be accessed in the template

The following variables will be assigned to the template an can be used there:

	exception:

	the Exception object which was thrown

	renderingOptions:

	the complete rendering options array, as defined in the settings. This is a merge
of Neos.Flow.error.exceptionHandler.defaultRenderingOptions and the options
array of the particular rendering group

	statusCode:

	the integer value of the HTTP status code which has been thrown (404, 503 etc.)

	statusMessage:

	the HTTP status message equivalent, for example Not Found, Service Unavailable etc.
If no matching status message could be found, this value is Unknown Status.

	referenceCode:

	the reference code of the exception, if applicable.

Logging and Debugging (to be written)

Signals and Slots

The concept of signals and slots has been introduced by the Qt toolkit and allows
for easy implementation of the Observer pattern in software.

A signal, which contains event information as it makes sense in the case at hand, can be
emitted (sent) by any part of the code and is received by one or more slots, which can be
any function in Flow. Almost no registration, deregistration or invocation code need be
written, because Flow automatically generates the needed infrastructure using AOP.

Defining and Using Signals

To define a signal, simply create a method stub which starts with emit and
annotate it with a Signal annotation:

Example: Definition of a signal in PHP

/**
 * @param Comment $comment
 * @return void
 * @Flow\Signal
 */
protected function emitCommentCreated(Comment $comment) {}

The method signature can be freely defined to fit the needs of the event that is to be
signalled. Whatever parameters are defined will be handed over to any slots
listening to that signal.

Note

The Signal annotation is picked up by the AOP framework and the method is filled
with implementation code as needed.

To emit a signal in your code, simply call the signal method whenever it makes sense,
like in this example:

Example: Emitting a Signal

/**
 * @param Comment $newComment
 * @return void
 */
public function createAction(Comment $newComment) {
 ...
 $this->emitCommentCreated($newComment);
 ...
}

The signal will be dispatched to all slots listening to it.

Defining Slots

Basically any method of any class can be used as a slot, even if never written
specifically for being a slot. The only requirement is a matching signature between signal
and slot, so that the parameters passed to the signal can be handed over to the slot
without problems. The following shows a slot, as you can see it differs in no way from any
non-slot method.

Example: A method that can be used as a slot

/**
 * @param Comment $comment
 * @return void
 */
public function sendNewCommentNotification(Comment $comment) {
 $mail = new \Neos\SwiftMailer\Message();
 $mail->setFrom(array('john@doe.org ' => 'John Doe'))
 ->setTo(array('karsten@neos.io ' => 'Karsten Dambekalns'))
 ->setSubject('New comment')
 ->setBody($comment->getContent())
 ->send();
}

Depending on the wiring there might be an extra parameter being given to the slot that
contains the class name and method name of the signal emitter, separated by ::.

Wiring Signals and Slots Together

Which slot is actually listening for which signal is configured (“wired”) in the bootstrap
code of a package. Any package can of course freely wire its own signals to its own
slots, but also wiring any other signal to any other slot is possible. You should be a
little careful when wiring your own or even other package’s signals to slots in other
packages, as the results could be non-obvious to someone using your package.

When Flow initializes, it runs the boot() method in a package’s Package class. This
is the place to wire signals to slots as needed for your package:

Example: Wiring signals and slots together

/**
 * Boot the package. We wire some signals to slots here.
 *
 * @param \Neos\Flow\Core\Bootstrap $bootstrap The current bootstrap
 * @return void
 */
public function boot(\Neos\Flow\Core\Bootstrap $bootstrap) {
 $dispatcher = $bootstrap->getSignalSlotDispatcher();
 $dispatcher->connect(
 'Some\Package\Controller\CommentController', 'commentCreated',
 'Some\Package\Service\Notification', 'sendNewCommentNotification'
);
}

The first pair of parameters given to connect() identifies the signal you want to
wire, the second pair the slot.

The signal is identified by the class name and the signal name, which is the method name without
emit. In the above example, the method which triggers the commentCreated signal is called
emitCommentCreated().

The slot is identified by the class name and method name which should be called. If the
method name starts with :: the slot will be called statically.

An alternative way of specifying the slot is to give an object instead of a class name to
the connect method. This can also be used to pass a Closure instance to react to
signals, in this case the slot method name can be omitted.

There is one more parameter available: $passSignalInformation. It controls
whether or not the signal information (class name and method name of the signal
emitter, separated by ::) should be passed to the slot as last parameter.
$passSignalInformation is TRUE by default.

Reflection

Reflection describes the practice to retrieve information about a program
itself and it’s internals during runtime. It usually also allows to modify
behavior and properties.

PHP already provides reflection capabilities, using them it’s possible to, for
example, change the accessibility of properties, e.g. from protected to
public, and access methods even though access to them is restricted.

Additionally it’s possible to gain information about what arguments a method
expects, and whether these are required or optional.

Reflection in Flow

Flow provides a powerful extension to PHP’s own basic reflection
functionality, not only adding more capabilities, but also speeding up
reflection massively. It makes heavy use of the annotations (tags) found in the
documentation blocks, which is another important reason why you should exercise care
about a correct formatting and respecting some rules when applying these.

Note

A specific description about these DocComment formatting requirements is
available in the Coding Guidelines.

The reflection of Flow is handled via the Reflection Service which can be
injected as usual.

Example: defining and accessing simple reflection information

/**
 * This is the description of the class.
 */
class CustomizedGoodsOrder extends AbstractOrder {

 /**
 * @var \Magrathea\Erp\Service\OrderNumberGenerator
 */
 protected $orderNumberGenerator;

 /**
 * @var \DateTime
 */
 protected $timestamp;

 /**
 * The customer who placed this order
 * @var \Magrathea\Erp\Domain\Model\Customer
 */
 protected $customer;

 /**
 * The order number, for example ME-3020-BB
 * @var string
 */
 protected $orderNumber;

 /**
 * @param \Magrathea\Erp\Domain\Model\Customer $customer;
 */
 public function __construct(Customer $customer) {
 $this->timestamp = new \DateTime();
 $this->customer = $customer;
 $this->orderNumber = $this->orderNumberGenerator->createOrderNumber();
 }

 /**
 * @return \Magrathea\Erp\Domain\Model\Customer
 */
 public function getCustomer() {
 return $this->customer;
 }
}

In an application, after wiring $reflectionService with
\Neos\Flow\Reflection\ReflectionService via, for example, Dependency
Injection, there are a couple of options available. The following two examples
just should give a slight overview.

Listing all sub classes of the AbstractOrder class*

$this->reflectionService->getAllSubClassNamesForClass('Magrathea\Erp\Domain\Model\AbstractOrder'));

returns array('Magrathea\Erp\Domain\Model\CustomizedGoodsOrder').

Fetching the plain annotation tags of the customer property from the
CustomizedGoodsOrder class

$this->reflectionService->getPropertyTagsValues('Magrathea\Erp\Domain\Model\CustomizedGoodsOrder', 'customer'));``

returns array('var' => '\Magrathea\Erp\Domain\Model\Customer')

The API doc of the ReflectionService shows all available methods. Generally
said, whatever information is needed to gain information about classes, their
properties and methods and their sub or parent classes and interface
implementations, can be retrieved via the reflection service.

Custom annotation classes

A powerful feature is the ability to introduce customized annotation classes;
this achieves, for example, what across the framework often can be seen with
the @Flow\… or @ORM\… annotations.

Create an annotation class

An annotation class is best created in a direct subdirectory of your
Classes one and carries the name Annotations. The class itself receives
the name exactly like the annotation should be.

Example: a ``Reportable`` annotation for use as class and property annotation:

<?php
namespace Magrathea\Erp\Annotations;

/**
 * Marks the class or property as reportable, It will then be doing
 * foo and bar, but not quux.
 *
 * @Annotation
 * @Target({"CLASS", "PROPERTY"})
 */
final class Reportable {

 /**
 * The name of the report. (Can be given as anonymous argument.)
 * @var string
 */
 public $reportName;

 /**
 * @param array $values
 */
 public function __construct(array $values) {
 if (!isset($values['value']) && !isset($values['reportName'])) {
 throw new \InvalidArgumentException('A Reporting annotation must specify a report name.', 1234567890);
 }
 $this->reportName = isset($values['reportName']) ? $values['reportName'] : $values['value'];
 }
}
?>

This defines a Reportable annotation, with one argument, reportName,
which is required in this case. It can be given with it’s name or anonymous,
as the sole (and/or first) argument to the value. The annotation can only be
used on classes or properties, using it on a method will throw an exception.
This is checked by the annotation parser, based on the Target annotation.
The documentation of the class and it’s properties can be used to generate
annotation reference documentation, so provide helpful descriptions and names.

Note

An annotation can also be simpler, using only public properties. The use of
a constructor allows for some checks and gives the possibility to have
anonymous arguments, if needed.

This annotation now can be set to arbitrary classes or properties, also across
packages. The namespace is introduced using the use statement and to
shorten the annotation; in the class this annotation can be set to the class
itself and to properties:

use Magrathea\Erp\Annotations as ERP;

/**
 * This is the description of the class.
 * @ERP\Reportable(reportName="OrderReport")
 */
class CustomizedGoodsOrder extends AbstractOrder {

 /**
 * @ERP\Reportable
 * @var \Magrathea\Erp\Service\OrderNumberGenerator
 */
 protected $orderNumberGenerator;

Accessing annotation classes

With the reflection service, just an instance of your created annotation class
is returned, populated with the appropriate information of the annotation
itself! So complying with the walkthrough, the following approach is possible:

$classAnnotation = $this->reflectionService->getClassAnnotation(
 'Magrathea\Erp\Domain\Model\CustomizedGoodsOrder',
 'Magrathea\Erp\Annotations\Reportable'
);
$classAnnotation instanceof \Magrathea\Erp\Annotations\Reportable;
$classAnnotation->reportName === 'OrderReport';

$propertyAnnotation = $this->reflectionService->getPropertyAnnotation(
 'Magrathea\Erp\Domain\Model\CustomizedGoodsOrder',
 'orderNumberGenerator',
 'Magrathea\Erp\Annotations\Reportable'
);
$propertyAnnotation instanceof \Magrathea\Erp\Annotations\Reportable;
$propertyAnnotation->reportName === NULL;

It’s even possible to collect all annotation classes of a particular class, done via
reflectionService->getClassAnnotations('Magrathea\Erp\Domain\Model\CustomizedGoodsOrder');
which returns an array of annotations, in this case Neos\Flow\Annotations\Entity
and our Magrathea\Erp\Annotations\Reportable.

Eel

Eel stands for Embedded Expression Language and enables developers to create a Domain Specific
Language.

E.g. Neos Fusion has Eel embedded to parse some parts in combination with FlowQuery.

Quickstart

The evaluation consists of two parts, the first one is the expression to evaluate. The second one is
the context needed to evaluate the expression.

An expression can be something like:

'foo.bar == "Test" || foo.baz == "Test" || reverse(foo).bar == "Test"'

To enable this expression to be parsed, a context is needed to define foo.bar, foo.baz and
reverse().

Basically a context is nothing more then an array defining the parts as key value pairs. The above
will need a context like:

[
 'foo' => [
 'bar' => 'Test1',
 'baz' => 'Test2',
],
 'reverse' => function ($array) {
 return array_reverse($array, true);
 },
]

To parse the above expression the following code can be used:

$expression = 'foo.bar == "Test" || foo.baz == "Test" || reverse(foo).bar == "Test"';
$context = new Context([
 'foo' => [
 'bar' => 'Test1',
 'baz' => 'Test2',
],
 'reverse' => function ($array) {
 return array_reverse($array, true);
 }
]);
$result = (new CompilingEvaluator)->evaluate($expression, $context);

In the above example $result will be a boolean. But the result depends on the expression and can
be of any type.

Context Types

Two context types are available.

Context will just provide everything you put into the array for the constructor.

ProtectedContext will provide the same, except that methods are disallowed by default. You need
to explicitly whitelist methods:

$context = new ProtectedContext([
 'String' => new \Neos\Eel\Helper\StringHelper,
]);
$context->whitelist('String.*');
$result = (new CompilingEvaluator)->evaluate(
 'String.substr("Hello World", 6, 5)',
 $context
);

In the above example, all methods for String are whitelisted and therefore the result will be
"World".

In case a non whitelisted method is called, a \Neos\Eel\NotAllowedException is thrown.

Evaluators

Two evaluator types are available.

CompilingEvaluator will generate PHP Code for expression and cache the expressions.

InterpretedEvaluator will not generate PHP Code and evaluate the expression every time. That’s
useful if you are using Eel outside of Flow context.

Helpers

Helpers provide convenient features like working with math, strings, arrays and dates. Each helper
is implemented as a class. No helpers are available out of the box while parsing an expression. To
include helpers add them to the context, e.g.

$context = new Context([
 'String' => new \Neos\Eel\Helper\StringHelper,
]);
$result = (new CompilingEvaluator)->evaluate(
 'String.substr("Hello World", 6, 5)',
 $context
);

The package comes with some predefined helpers you can include in your context. A full,
auto generated, list of helpers can be found at Neos Eel Helpers Reference [https://neos.readthedocs.io/en/stable/References/EelHelpersReference.html#eel-helpers-reference].

Grammar

The full grammar can be found at the Eel repository [https://github.com/neos/eel/blob/master/Documentation/FLOW3-Eel-Grammar.txt].

File Monitoring (to be written)

Testing (to be written)

Utility Functions

This chapter contains short introductions to helpful utility functions available
in Flow. Please see the API documentation for a full reference:

	Neos\Utility\ObjectAccess should be used to get/set properties on
objects, arrays and similar structures.

	Neos\Utility\Arrays contains some array helper functions for merging
arrays or creating them from strings.

	Neos\Utility\Files contains functions for manipulating files and directories,
and for unifying file access across the different platforms.

	Neos\Utility\MediaTypes contains a list of internet media types and
their corresponding file types, and can be used to map between them.

	Neos\Flow\Utility\Now is a singleton DateTime class containing
the current time. It should always be used when you need access to the current
time.

Part IV: Deployment and Administration (to be written)

Part V: Appendixes

	Flow Annotation Reference

	Flow Command Reference

	Contributing to Flow

	FluidAdaptor ViewHelper Reference

	Predefined Constants Reference

	Flow Signals Reference

	TYPO3 Fluid ViewHelper Reference

	Flow TypeConverter Reference

	Flow Validator Reference

	Coding Guidelines

	Release Notes

	ChangeLogs

Flow Annotation Reference

This reference was automatically generated from code on 2020-12-02

After

Declares a method as an after advice to be triggered after any
pointcut matching the given expression.

	Applicable to

	Method

Arguments

	pointcutExpression (string): The pointcut expression. (Can be given as anonymous argument.)

AfterReturning

Declares a method as an after returning advice to be triggered
after any pointcut matching the given expression returns.

	Applicable to

	Method

Arguments

	pointcutExpression (string): The pointcut expression. (Can be given as anonymous argument.)

AfterThrowing

Declares a method as an after throwing advice to be triggered
after any pointcut matching the given expression throws an exception.

	Applicable to

	Method

Arguments

	pointcutExpression (string): The pointcut expression. (Can be given as anonymous argument.)

Around

Declares a method as an around advice to be triggered around any
pointcut matching the given expression.

	Applicable to

	Method

Arguments

	pointcutExpression (string): The pointcut expression. (Can be given as anonymous argument.)

Aspect

Marks a class as an aspect.

The class will be read by the AOP framework of Flow and inspected for
pointcut expressions and advice.

	Applicable to

	Class

Autowiring

Used to disable autowiring for Dependency Injection on the
whole class or on the annotated property only.

	Applicable to

	Method, Class

Arguments

	enabled (boolean): Whether autowiring is enabled. (Can be given as anonymous argument.)

Before

Declares a method as an before advice to be triggered before any
pointcut matching the given expression.

	Applicable to

	Method

Arguments

	pointcutExpression (string): The pointcut expression. (Can be given as anonymous argument.)

CompileStatic

Entity

Marks an object as an entity.

Behaves like DoctrineORMMappingEntity so it is interchangeable
with that.

	Applicable to

	Class

Arguments

	repositoryClass (string): Name of the repository class to use for managing the entity.

	readOnly (boolean): Whether the entity should be read-only.

FlushesCaches

Marks a CLI command as a cache-flushing command.

Usually used for framework purposes only.

	Applicable to

	Method

Identity

Marks a property as being (part of) the identity of an object.

If multiple properties are annotated as Identity, a compound
identity is created.

For Doctrine a unique key over all involved properties will be
created - thus the limitations of that need to be observed.

	Applicable to

	Property

IgnoreValidation

Used to ignore validation on a specific method argument or class property.

By default no validation will be executed for the given argument. To gather validation results for further
processing, the “evaluate” option can be set to true (while still ignoring any validation error).

	Applicable to

	Method, Property

Arguments

	argumentName (string): Name of the argument to skip validation for. (Can be given as anonymous argument.)

	evaluate (boolean): Whether to evaluate the validation results of the argument

Inject

Used to enable property injection.

Flow will build Dependency Injection code for the property and try
to inject a value as specified by the var annotation.

	Applicable to

	Property

Arguments

	lazy (boolean): Whether the dependency should be injected instantly or if a lazy dependency
proxy should be injected instead

InjectConfiguration

Used to enable property injection for configuration including settings.

Flow will build Dependency Injection code for the property and try
to inject the configured configuration.

	Applicable to

	Property

Arguments

	path (string): Path of a configuration which should be injected into the property.
Can be specified as anonymous argument: InjectConfiguration(“some.path”)

For type “Settings” this refers to the relative path (excluding the package key)

Example: session.name

	package (string): Defines the package key to be used for retrieving settings. If no package key is specified, we’ll assume the
package to be the same which contains the class where the InjectConfiguration annotation is used.

Note: This property is only supported for type “Settings”

Example: Neos.Flow

	type (string one of the ConfigurationManager::CONFIGURATION_TYPE_* constants): Type of Configuration (defaults to “Settings”).

Internal

Used to mark a command as internal - it will not be shown in
CLI help output.

Usually used for framework purposes only.

	Applicable to

	Method

Introduce

Introduces the given interface or property into any target class matching
the given pointcut expression.

	Applicable to

	Class, Property

Arguments

	pointcutExpression (string): The pointcut expression. (Can be given as anonymous argument.)

	interfaceName (string): The interface name to introduce.

	traitName (string): The trait name to introduce

Lazy

Marks a property or class as lazy-loaded.

This is only relevant for anything based on the generic persistence
layer of Flow. For Doctrine based persistence this is ignored.

	Applicable to

	Class, Property

Pointcut

Declares a named pointcut. The annotated method does not become an advice
but can be used as a named pointcut instead of the given expression.

	Applicable to

	Method

Arguments

	expression (string): The pointcut expression. (Can be given as anonymous argument.)

Proxy

Used to disable proxy building for an object.

If disabled, neither Dependency Injection nor AOP can be used
on the object.

	Applicable to

	Class

Arguments

	enabled (boolean): Whether proxy building for the target is disabled. (Can be given as anonymous argument.)

Scope

Used to set the scope of an object.

	Applicable to

	Class

Arguments

	value (string): The scope of an object: prototype, singleton, session. (Usually given as anonymous argument.)

Session

Used to control the behavior of session handling when the annotated
method is called.

	Applicable to

	Method

Arguments

	autoStart (boolean): Whether the annotated method triggers the start of a session.

Signal

Marks a method as a signal for the signal/slot implementation
of Flow. The method will be augmented as needed (using AOP)
to be a usable signal.

	Applicable to

	Method

SkipCsrfProtection

Action methods marked with this annotation will not be secured
against CSRF.

Since CSRF is a risk for write operations, this is useful for read-only
actions. The overhead for CRSF token generation and validation can be
skipped in those cases.

	Applicable to

	Method

Transient

Marks a property as transient - it will never be considered by the
persistence layer for storage and retrieval.

Useful for calculated values and any other properties only needed
during runtime.

	Applicable to

	Property

Validate

Controls how a property or method argument will be validated by Flow.

	Applicable to

	Method, Property

Arguments

	type (string): The validator type, either a FQCN or a Flow validator class name.

	options (array): Options for the validator, validator-specific.

	argumentName (string): The name of the argument this annotation is attached to, if used on a method. (Can be given as anonymous argument.)

	validationGroups (array): The validation groups for which this validator should be executed.

ValidationGroups

Arguments

	validationGroups (array): The validation groups for which validation on this method should be executed. (Can be given as anonymous argument.)

ValueObject

Marks the annotate class as a value object.

Regarding Doctrine the object is treated like an entity, but Flow
applies some optimizations internally, e.g. to store only one instance
of a value object.

	Applicable to

	Class

Arguments

	embedded (boolean): Whether the value object should be embedded.

Flow Command Reference

The commands in this reference are shown with their full command identifiers.
On your system you can use shorter identifiers, whose availability depends
on the commands available in total (to avoid overlap the shortest possible
identifier is determined during runtime).

To see the shortest possible identifiers on your system as well as further
commands that may be available, use:

./flow help

The following reference was automatically generated from code on 2020-12-02

Package NEOS.FLOW

neos.flow:cache:flush

Flush all caches

The flush command flushes all caches (including code caches) which have been
registered with Flow’s Cache Manager. It also removes any session data.

If fatal errors caused by a package prevent the compile time bootstrap
from running, the removal of any temporary data can be forced by specifying
the option –force.

This command does not remove the precompiled data provided by frozen
packages unless the –force option is used.

Options

	--force

	Force flushing of any temporary data

Related commands

	neos.flow:cache:warmup

	Warm up caches

	neos.flow:package:freeze

	Freeze a package

	neos.flow:package:refreeze

	Refreeze a package

neos.flow:cache:flushone

Flushes a particular cache by its identifier

Given a cache identifier, this flushes just that one cache. To find
the cache identifiers, you can use the configuration:show command with
the type set to “Caches”.

Note that this does not have a force-flush option since it’s not
meant to remove temporary code data, resulting into a broken state if
code files lack.

Arguments

	--identifier

	Cache identifier to flush cache for

Related commands

	neos.flow:cache:flush

	Flush all caches

	neos.flow:configuration:show

	Show the active configuration settings

neos.flow:cache:warmup

Warm up caches

The warm up caches command initializes and fills – as far as possible – all
registered caches to get a snappier response on the first following request.
Apart from caches, other parts of the application may hook into this command
and execute tasks which take further steps for preparing the app for the big
rush.

Related commands

	neos.flow:cache:flush

	Flush all caches

neos.flow:configuration:generateschema

Generate a schema for the given configuration or YAML file.

./flow configuration:generateschema –type Settings –path Neos.Flow.persistence

The schema will be output to standard output.

Options

	--type

	Configuration type to create a schema for

	--path

	path to the subconfiguration separated by “.” like “Neos.Flow

	--yaml

	YAML file to create a schema for

neos.flow:configuration:listtypes

List registered configuration types

neos.flow:configuration:show

Show the active configuration settings

The command shows the configuration of the current context as it is used by Flow itself.
You can specify the configuration type and path if you want to show parts of the configuration.

Display all settings:
./flow configuration:show

Display Flow persistence settings:
./flow configuration:show –path Neos.Flow.persistence

Display Flow Object Cache configuration
./flow configuration:show –type Caches –path Flow_Object_Classes

Options

	--type

	Configuration type to show, defaults to Settings

	--path

	path to subconfiguration separated by “.” like “Neos.Flow

neos.flow:configuration:validate

Validate the given configuration

Validate all configuration
./flow configuration:validate

Validate configuration at a certain subtype
./flow configuration:validate –type Settings –path Neos.Flow.persistence

You can retrieve the available configuration types with:
./flow configuration:listtypes

Options

	--type

	Configuration type to validate

	--path

	path to the subconfiguration separated by “.” like “Neos.Flow

	--verbose

	if true, output more verbose information on the schema files which were used

neos.flow:core:migrate

Migrate source files as needed

This will apply pending code migrations defined in packages to the
specified package.

For every migration that has been run, it will create a commit in
the package. This allows for easy inspection, rollback and use of
the fixed code.
If the affected package contains local changes or is not part of
a git repository, the migration will be skipped. With the –force
flag this behavior can be changed, but changes will only be committed
if the working copy was clean before applying the migration.

Arguments

	--package

	The key of the package to migrate

Options

	--status

	Show the migration status, do not run migrations

	--packages-path

	If set, use the given path as base when looking for packages

	--version

	If set, execute only the migration with the given version (e.g. “20150119114100”)

	--verbose

	If set, notes and skipped migrations will be rendered

	--force

	By default packages that are not under version control or contain local changes are skipped. With this flag set changes are applied anyways (changes are not committed if there are local changes though)

Related commands

	neos.flow:doctrine:migrate

	Migrate the database schema

neos.flow:core:setfilepermissions

Adjust file permissions for CLI and web server access

This command adjusts the file permissions of the whole Flow application to
the given command line user and webserver user / group.

Arguments

	--commandline-user

	User name of the command line user, for example “john

	--webserver-user

	User name of the webserver, for example “www-data

	--webserver-group

	Group name of the webserver, for example “www-data

neos.flow:core:shell

Run the interactive Shell

The shell command runs Flow’s interactive shell. This shell allows for
entering commands like through the regular command line interface but
additionally supports autocompletion and a user-based command history.

neos.flow:database:setcharset

Convert the database schema to use the given character set and collation (defaults to utf8mb4 and utf8mb4_unicode_ci).

This command can be used to convert the database configured in the Flow settings to the utf8mb4 character
set and the utf8mb4_unicode_ci collation (by default, a custom collation can be given). It will only
work when using the pdo_mysql driver.

Make a backup before using it, to be on the safe side. If you want to inspect the statements used
for conversion, you can use the $output parameter to write them into a file. This file can be used to do
the conversion manually.

For background information on this, see:

	http://stackoverflow.com/questions/766809/

	http://dev.mysql.com/doc/refman/5.5/en/alter-table.html

	https://medium.com/@adamhooper/in-mysql-never-use-utf8-use-utf8mb4-11761243e434

	https://mathiasbynens.be/notes/mysql-utf8mb4

	https://florian.ec/articles/mysql-doctrine-utf8/

The main purpose of this is to fix setups that were created with Flow before version 5.0. In those cases,
the tables will have a collation that does not match the default collation of later Flow versions, potentially
leading to problems when creating foreign key constraints (among others, potentially).

If you have special needs regarding the charset and collation, you can override the defaults with
different ones.

Note: This command is not a general purpose conversion tool. It will specifically not fix cases
of actual utf8 stored in latin1 columns. For this a conversion to BLOB followed by a conversion to the
proper type, charset and collation is needed instead.

Options

	--character-set

	Character set, defaults to utf8mb4

	--collation

	Collation to use, defaults to utf8mb4_unicode_ci

	--output

	A file to write SQL to, instead of executing it

	--verbose

	If set, the statements will be shown as they are executed

neos.flow:doctrine:create

Create the database schema

Creates a new database schema based on the current mapping information.

It expects the database to be empty, if tables that are to be created already
exist, this will lead to errors.

Options

	--output

	A file to write SQL to, instead of executing it

Related commands

	neos.flow:doctrine:update

	Update the database schema

	neos.flow:doctrine:migrate

	Migrate the database schema

neos.flow:doctrine:dql

Run arbitrary DQL and display results

Any DQL queries passed after the parameters will be executed, the results will be output:

doctrine:dql –limit 10 ‘SELECT a FROM NeosFlowSecurityAccount a’

Options

	--depth

	How many levels deep the result should be dumped

	--hydration-mode

	One of: object, array, scalar, single-scalar, simpleobject

	--offset

	Offset the result by this number

	--limit

	Limit the result to this number

neos.flow:doctrine:entitystatus

Show the current status of entities and mappings

Shows basic information about which entities exist and possibly if their
mapping information contains errors or not.

To run a full validation, use the validate command.

Options

	--dump-mapping-data

	If set, the mapping data will be output

	--entity-class-name

	If given, the mapping data for just this class will be output

Related commands

	neos.flow:doctrine:validate

	Validate the class/table mappings

neos.flow:doctrine:migrate

Migrate the database schema

Adjusts the database structure by applying the pending
migrations provided by currently active packages.

Options

	--version

	The version to migrate to

	--output

	A file to write SQL to, instead of executing it

	--dry-run

	Whether to do a dry run or not

	--quiet

	If set, only the executed migration versions will be output, one per line

Related commands

	neos.flow:doctrine:migrationstatus

	Show the current migration status

	neos.flow:doctrine:migrationexecute

	Execute a single migration

	neos.flow:doctrine:migrationgenerate

	Generate a new migration

	neos.flow:doctrine:migrationversion

	Mark/unmark migrations as migrated

neos.flow:doctrine:migrationexecute

Execute a single migration

Manually runs a single migration in the given direction.

Arguments

	--version

	The migration to execute

Options

	--direction

	Whether to execute the migration up (default) or down

	--output

	A file to write SQL to, instead of executing it

	--dry-run

	Whether to do a dry run or not

Related commands

	neos.flow:doctrine:migrate

	Migrate the database schema

	neos.flow:doctrine:migrationstatus

	Show the current migration status

	neos.flow:doctrine:migrationgenerate

	Generate a new migration

	neos.flow:doctrine:migrationversion

	Mark/unmark migrations as migrated

neos.flow:doctrine:migrationgenerate

Generate a new migration

If $diffAgainstCurrent is true (the default), it generates a migration file
with the diff between current DB structure and the found mapping metadata.

Otherwise an empty migration skeleton is generated.

Only includes tables/sequences matching the $filterExpression regexp when
diffing models and existing schema. Include delimiters in the expression!
The use of

–filter-expression ‘/^acme_com/’

would only create a migration touching tables starting with “acme_com”.

Note: A filter-expression will overrule any filter configured through the
Neos.Flow.persistence.doctrine.migrations.ignoredTables setting

Options

	--diff-against-current

	Whether to base the migration on the current schema structure

	--filter-expression

	Only include tables/sequences matching the filter expression regexp

	--force

	Generate migrations even if there are migrations left to execute

Related commands

	neos.flow:doctrine:migrate

	Migrate the database schema

	neos.flow:doctrine:migrationstatus

	Show the current migration status

	neos.flow:doctrine:migrationexecute

	Execute a single migration

	neos.flow:doctrine:migrationversion

	Mark/unmark migrations as migrated

neos.flow:doctrine:migrationstatus

Show the current migration status

Displays the migration configuration as well as the number of
available, executed and pending migrations.

Options

	--show-migrations

	Output a list of all migrations and their status

	--show-descriptions

	Show descriptions for the migrations (enables versions display)

Related commands

	neos.flow:doctrine:migrate

	Migrate the database schema

	neos.flow:doctrine:migrationexecute

	Execute a single migration

	neos.flow:doctrine:migrationgenerate

	Generate a new migration

	neos.flow:doctrine:migrationversion

	Mark/unmark migrations as migrated

neos.flow:doctrine:migrationversion

Mark/unmark migrations as migrated

If all is given as version, all available migrations are marked
as requested.

Arguments

	--version

	The migration to execute

Options

	--add

	The migration to mark as migrated

	--delete

	The migration to mark as not migrated

Related commands

	neos.flow:doctrine:migrate

	Migrate the database schema

	neos.flow:doctrine:migrationstatus

	Show the current migration status

	neos.flow:doctrine:migrationexecute

	Execute a single migration

	neos.flow:doctrine:migrationgenerate

	Generate a new migration

neos.flow:doctrine:update

Update the database schema

Updates the database schema without using existing migrations.

It will not drop foreign keys, sequences and tables, unless –unsafe-mode is set.

Options

	--unsafe-mode

	If set, foreign keys, sequences and tables can potentially be dropped.

	--output

	A file to write SQL to, instead of executing the update directly

Related commands

	neos.flow:doctrine:create

	Create the database schema

	neos.flow:doctrine:migrate

	Migrate the database schema

neos.flow:doctrine:validate

Validate the class/table mappings

Checks if the current class model schema is valid. Any inconsistencies
in the relations between models (for example caused by wrong or
missing annotations) will be reported.

Note that this does not check the table structure in the database in
any way.

Related commands

	neos.flow:doctrine:entitystatus

	Show the current status of entities and mappings

neos.flow:help:help

Display help for a command

The help command displays help for a given command:
./flow help <commandIdentifier>

Options

	--command-identifier

	Identifier of a command for more details

neos.flow:package:create

Create a new package

This command creates a new package which contains only the mandatory
directories and files.

Arguments

	--package-key

	The package key of the package to create

Options

	--package-type

	The package type of the package to create

Related commands

	neos.kickstarter:kickstart:package

	Kickstart a new package

neos.flow:package:freeze

Freeze a package

This function marks a package as frozen in order to improve performance
in a development context. While a package is frozen, any modification of files
within that package won’t be tracked and can lead to unexpected behavior.

File monitoring won’t consider the given package. Further more, reflection
data for classes contained in the package is cached persistently and loaded
directly on the first request after caches have been flushed. The precompiled
reflection data is stored in the Configuration directory of the
respective package.

By specifying all as a package key, all currently frozen packages are
frozen (the default).

Options

	--package-key

	Key of the package to freeze

Related commands

	neos.flow:package:unfreeze

	Unfreeze a package

	neos.flow:package:refreeze

	Refreeze a package

neos.flow:package:list

List available packages

Lists all locally available packages. Displays the package key, version and
package title.

Options

	--loading-order

	The returned packages are ordered by their loading order.

Related commands

	neos.flow:package:activate

	Command not available

	neos.flow:package:deactivate

	Command not available

neos.flow:package:refreeze

Refreeze a package

Refreezes a currently frozen package: all precompiled information is removed
and file monitoring will consider the package exactly once, on the next
request. After that request, the package remains frozen again, just with the
updated data.

By specifying all as a package key, all currently frozen packages are
refrozen (the default).

Options

	--package-key

	Key of the package to refreeze, or ‘all’

Related commands

	neos.flow:package:freeze

	Freeze a package

	neos.flow:cache:flush

	Flush all caches

neos.flow:package:rescan

Rescan package availability and recreates the PackageStates configuration.

neos.flow:package:unfreeze

Unfreeze a package

Unfreezes a previously frozen package. On the next request, this package will
be considered again by the file monitoring and related services – if they are
enabled in the current context.

By specifying all as a package key, all currently frozen packages are
unfrozen (the default).

Options

	--package-key

	Key of the package to unfreeze, or ‘all’

Related commands

	neos.flow:package:freeze

	Freeze a package

	neos.flow:cache:flush

	Flush all caches

neos.flow:resource:clean

Clean up resource registry

This command checks the resource registry (that is the database tables) for orphaned resource objects which don’t
seem to have any corresponding data anymore (for example: the file in Data/Persistent/Resources has been deleted
without removing the related PersistentResource object).

If the Neos.Media package is active, this command will also detect any assets referring to broken resources
and will remove the respective Asset object from the database when the broken resource is removed.

This command will ask you interactively what to do before deleting anything.

neos.flow:resource:copy

Copy resources

This command copies all resources from one collection to another storage identified by name.
The target storage must be empty and must not be identical to the current storage of the collection.

This command merely copies the binary data from one storage to another, it does not change the related
PersistentResource objects in the database in any way. Since the PersistentResource objects in the database refer to a
collection name, you can use this command for migrating from one storage to another my configuring
the new storage with the name of the old storage collection after the resources have been copied.

Arguments

	--source-collection

	The name of the collection you want to copy the assets from

	--target-collection

	The name of the collection you want to copy the assets to

Options

	--publish

	If enabled, the target collection will be published after the resources have been copied

neos.flow:resource:publish

Publish resources

This command publishes the resources of the given or - if none was specified, all - resource collections
to their respective configured publishing targets.

Options

	--collection

	If specified, only resources of this collection are published. Example: ‘persistent’

neos.flow:routing:getpath

Generate a route path

This command takes package, controller and action and displays the
generated route path and the selected route:

./flow routing:getPath –format json Acme.Demo\Sub\Package

Arguments

	--package

	Package key and subpackage, subpackage parts are separated with backslashes

Options

	--controller

	Controller name, default is ‘Standard’

	--action

	Action name, default is ‘index’

	--format

	Requested Format name default is ‘html’

neos.flow:routing:list

List the known routes

This command displays a list of all currently registered routes.

neos.flow:routing:routepath

Route the given route path

This command takes a given path and displays the detected route and
the selected package, controller and action.

Arguments

	--path

	The route path to resolve

Options

	--method

	The request method (GET, POST, PUT, DELETE, …) to simulate

neos.flow:routing:show

Show information for a route

This command displays the configuration of a route specified by index number.

Arguments

	--index

	The index of the route as given by routing:list

neos.flow:schema:validate

Validate the given configurationfile againt a schema file

Options

	--configuration-file

	path to the validated configuration file

	--schema-file

	path to the schema file

	--verbose

	if true, output more verbose information on the schema files which were used

neos.flow:schema:validateschema

Validate the given configurationfile againt a schema file

Arguments

	--configuration-file

	path to the validated configuration file

Options

	--schema-file

	path to the schema file

	--verbose

	if true, output more verbose information on the schema files which were used

neos.flow:security:generatekeypair

Generate a public/private key pair and add it to the RSAWalletService

Options

	--used-for-passwords

	If the private key should be used for passwords

Related commands

	neos.flow:security:importprivatekey

	Import a private key

neos.flow:security:importprivatekey

Import a private key

Read a PEM formatted private key from stdin and import it into the
RSAWalletService. The public key will be automatically extracted and stored
together with the private key as a key pair.

You can generate the same fingerprint returned from this using these commands:

ssh-keygen -yf my-key.pem > my-key.pub
ssh-keygen -lf my-key.pub

To create a private key to import using this method, you can use:

ssh-keygen -t rsa -f my-key
./flow security:importprivatekey < my-key

Again, the fingerprint can also be generated using:

ssh-keygen -lf my-key.pub

Options

	--used-for-passwords

	If the private key should be used for passwords

Related commands

	neos.flow:security:importpublickey

	Import a public key

	neos.flow:security:generatekeypair

	Generate a public/private key pair and add it to the RSAWalletService

neos.flow:security:importpublickey

Import a public key

Read a PEM formatted public key from stdin and import it into the
RSAWalletService.

Related commands

	neos.flow:security:importprivatekey

	Import a private key

neos.flow:security:showeffectivepolicy

Shows a list of all defined privilege targets and the effective permissions

Arguments

	--privilege-type

	The privilege type (“entity”, “method” or the FQN of a class implementing PrivilegeInterface)

Options

	--roles

	A comma separated list of role identifiers. Shows policy for an unauthenticated user when left empty.

neos.flow:security:showmethodsforprivilegetarget

Shows the methods represented by the given security privilege target

If the privilege target has parameters those can be specified separated by a colon
for example “parameter1:value1” “parameter2:value2”.
But be aware that this only works for parameters that have been specified in the policy

Arguments

	--privilege-target

	The name of the privilegeTarget as stated in the policy

neos.flow:security:showunprotectedactions

Lists all public controller actions not covered by the active security policy

neos.flow:server:run

Run a standalone development server

Starts an embedded server, see http://php.net/manual/en/features.commandline.webserver.php
Note: This requires PHP 5.4+

To change the context Flow will run in, you can set the FLOW_CONTEXT environment variable:
export FLOW_CONTEXT=Development && ./flow server:run

Options

	--host

	The host name or IP address for the server to listen on

	--port

	The server port to listen on

neos.flow:typeconverter:list

Lists all currently active and registered type converters

All active converters are listed with ordered by priority and grouped by
source type first and target type second.

Options

	--source

	Filter by source

	--target

	Filter by target type

Package NEOS.FLUIDADAPTOR

neos.fluidadaptor:documentation:generatexsd

Generate Fluid ViewHelper XSD Schema

Generates Schema documentation (XSD) for your ViewHelpers, preparing the
file to be placed online and used by any XSD-aware editor.
After creating the XSD file, reference it in your IDE and import the namespace
in your Fluid template by adding the xmlns:* attribute(s):
<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:f=”http://typo3.org/ns/TYPO3/Fluid/ViewHelpers” …>

Arguments

	--php-namespace

	Namespace of the Fluid ViewHelpers without leading backslash (for example ‘NeosFluidAdaptorViewHelpers’). NOTE: Quote and/or escape this argument as needed to avoid backslashes from being interpreted!

Options

	--xsd-namespace

	Unique target namespace used in the XSD schema (for example “http://yourdomain.org/ns/viewhelpers”). Defaults to “http://typo3.org/ns/<php namespace>”.

	--target-file

	File path and name of the generated XSD schema. If not specified the schema will be output to standard output.

Contributing to Flow

Got time, a computer and a brain? Here is how you can help:

Report and Validate Issues

We don’t code bugs, at least not on purpose. But if you find one, report it in
our issue tracker. But please help us to solve it by attaching a detailed description
of how to reproduce the issue. If you can provide a unit test that shows the bug,
this rocks big time.

	Tasks: Find bugs, describe them, reproduce them in a unit test

	Skills needed: Attention to detail, knowledge about PHP and PHPUnit is a plus

Report bugs in the Flow issue tracker [https://github.com/neos/flow-development-collection/issues] !

Improve Documentation

A complex system like ours needs a lot of documentation. And despite the
complexity that documentation should be easy and fun to read. Right?

	Tasks: Proof read existing documentation, writing new documentation

	Skills needed: Writing skills and very good english are a must

Work on the Code

You found a bug? Have an idea for a missing feature? Found clever solution to an
open task? Just write the code and submit it to us for inclusion. Do it on a
regular basis and become famous. So they say.

	Tasks: Write clean and useful code. Bonus points for beautiful code :-)

	Skills needed: good to expert PHP knowledge, good understanding for OOP,
knowledge about patterns and “enterprise architecture” is a plus

FluidAdaptor ViewHelper Reference

This reference was automatically generated from code on 2020-12-02

f:debug

View helper that outputs its child nodes with NeosFlowvar_dump()

	Implementation

	Neos\FluidAdaptor\ViewHelpers\DebugViewHelper

Arguments

	title (string, optional): The title

	typeOnly (boolean, optional): Whether only the type should be returned instead of the whole chain.

Examples

inline notation and custom title:

{object -> f:debug(title: 'Custom title')}

Expected result:

all properties of {object} nicely highlighted (with custom title)

only output the type:

{object -> f:debug(typeOnly: true)}

Expected result:

the type or class name of {object}

f:flashMessages

View helper which renders the flash messages (if there are any) as an unsorted list.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\FlashMessagesViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

	as (string, optional): The name of the current flashMessage variable for rendering inside

	severity (string, optional): severity of the messages (One of the NeosErrorMessagesMessage::SEVERITY_* constants)

Examples

Simple:

<f:flashMessages />

Expected result:

 <li class="flashmessages-ok">Some Default Message
 <li class="flashmessages-warning">Some Warning Message

Output with css class:

<f:flashMessages class="specialClass" />

Expected result:

<ul class="specialClass">
 <li class="specialClass-ok">Default Message
 <li class="specialClass-notice"><h3>Some notice message</h3>With message title

Output flash messages as a list, with arguments and filtered by a severity:

<f:flashMessages severity="Warning" as="flashMessages">
 <dl class="messages">
 <f:for each="{flashMessages}" as="flashMessage">
 <dt>{flashMessage.code}</dt>
 <dd>{flashMessage}</dd>
 </f:for>
 </dl>
</f:flashMessages>

Expected result:

<dl class="messages">
 <dt>1013</dt>
 <dd>Some Warning Message.</dd>
</dl>

f:form

Used to output an HTML <form> tag which is targeted at the specified action, in the current controller and package.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\FormViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	enctype (string, optional): MIME type with which the form is submitted

	method (string, optional): Transfer type (GET or POST)

	name (string, optional): Name of form

	onreset (string, optional): JavaScript: On reset of the form

	onsubmit (string, optional): JavaScript: On submit of the form

	action (string, optional): Target action

	arguments (array, optional): Arguments

	controller (string, optional): Target controller. If NULL current controllerName is used

	package (string, optional): Target package. if NULL current package is used

	subpackage (string, optional): Target subpackage. if NULL current subpackage is used

	object (mixed, optional): object to use for the form. Use in conjunction with the “property” attribute on the sub tags

	section (string, optional): The anchor to be added to the URI

	format (string, optional): The requested format, e.g. “.html”

	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)

	absolute (boolean, optional): If set, an absolute action URI is rendered (only active if $actionUri is not set)

	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true

	fieldNamePrefix (string, optional): Prefix that will be added to all field names within this form

	actionUri (string, optional): can be used to overwrite the “action” attribute of the form tag

	objectName (string, optional): name of the object that is bound to this form. If this argument is not specified, the name attribute of this form is used to determine the FormObjectName

	useParentRequest (boolean, optional): If set, the parent Request will be used instead ob the current one

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Basic usage, POST method:

<f:form action="...">...</f:form>

Expected result:

<form action="...">...</form>

Basic usage, GET method:

<f:form action="..." method="get">...</f:form>

Expected result:

<form method="GET" action="...">...</form>

Form with a sepcified encoding type:

<f:form action=".." controller="..." package="..." enctype="multipart/form-data">...</f:form>

Expected result:

<form enctype="multipart/form-data" action="...">...</form>

Binding a domain object to a form:

<f:form action="..." name="customer" object="{customer}">
 <f:form.hidden property="id" />
 <f:form.textfield property="name" />
</f:form>

Expected result:

A form where the value of {customer.name} is automatically inserted inside the textbox; the name of the textbox is
set to match the property name.

f:form.button

Creates a button.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\ButtonViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	autofocus (string, optional): Specifies that a button should automatically get focus when the page loads

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	form (string, optional): Specifies one or more forms the button belongs to

	formaction (string, optional): Specifies where to send the form-data when a form is submitted. Only for type=”submit”

	formenctype (string, optional): Specifies how form-data should be encoded before sending it to a server. Only for type=”submit” (e.g. “application/x-www-form-urlencoded”, “multipart/form-data” or “text/plain”)

	formmethod (string, optional): Specifies how to send the form-data (which HTTP method to use). Only for type=”submit” (e.g. “get” or “post”)

	formnovalidate (string, optional): Specifies that the form-data should not be validated on submission. Only for type=”submit”

	formtarget (string, optional): Specifies where to display the response after submitting the form. Only for type=”submit” (e.g. “_blank”, “_self”, “_parent”, “_top”, “framename”)

	type (string, optional): Specifies the type of button (e.g. “button”, “reset” or “submit”)

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Defaults:

<f:form.button>Send Mail</f:form.button>

Expected result:

<button type="submit" name="" value="">Send Mail</button>

Disabled cancel button with some HTML5 attributes:

<f:form.button type="reset" name="buttonName" value="buttonValue" disabled="disabled" formmethod="post" formnovalidate="formnovalidate">Cancel</f:form.button>

Expected result:

<button disabled="disabled" formmethod="post" formnovalidate="formnovalidate" type="reset" name="myForm[buttonName]" value="buttonValue">Cancel</button>

f:form.checkbox

View Helper which creates a simple checkbox (<input type=”checkbox”>).

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\CheckboxViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed): Value of input tag. Required for checkboxes

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	errorClass (string, optional): CSS class to set if there are errors for this view helper

	checked (boolean, optional): Specifies that the input element should be preselected

	multiple (boolean, optional): Specifies whether this checkbox belongs to a multivalue (is part of a checkbox group)

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.checkbox name="myCheckBox" value="someValue" />

Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" />

Preselect:

<f:form.checkbox name="myCheckBox" value="someValue" checked="{object.value} == 5" />

Expected result:

<input type="checkbox" name="myCheckBox" value="someValue" checked="checked" />
(depending on $object)

Bind to object property:

<f:form.checkbox property="interests" value="TYPO3" />

Expected result:

<input type="checkbox" name="user[interests][]" value="TYPO3" checked="checked" />
(depending on property "interests")

f:form.hidden

Renders an <input type=”hidden” …> tag.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\HiddenViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.hidden name="myHiddenValue" value="42" />

Expected result:

<input type="hidden" name="myHiddenValue" value="42" />

f:form.password

View Helper which creates a simple Password Text Box (<input type=”password”>).

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\PasswordViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	required (boolean, optional): Specifies that the input element requires a entry pre submit

	maxlength (int, optional): The maxlength attribute of the input field (will not be validated)

	readonly (string, optional): The readonly attribute of the input field

	size (int, optional): The size of the input field

	placeholder (string, optional): The placeholder of the input field

	errorClass (string, optional): CSS class to set if there are errors for this view helper

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.password name="myPassword" />

Expected result:

<input type="password" name="myPassword" value="default value" />

f:form.radio

View Helper which creates a simple radio button (<input type=”radio”>).

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\RadioViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed): Value of input tag. Required for radio buttons

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	errorClass (string, optional): CSS class to set if there are errors for this view helper

	checked (boolean, optional): Specifies that the input element should be preselected

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.radio name="myRadioButton" value="someValue" />

Expected result:

<input type="radio" name="myRadioButton" value="someValue" />

Preselect:

<f:form.radio name="myRadioButton" value="someValue" checked="{object.value} == 5" />

Expected result:

<input type="radio" name="myRadioButton" value="someValue" checked="checked" />
(depending on $object)

Bind to object property:

<f:form.radio property="newsletter" value="1" /> yes
<f:form.radio property="newsletter" value="0" /> no

Expected result:

<input type="radio" name="user[newsletter]" value="1" checked="checked" /> yes
<input type="radio" name="user[newsletter]" value="0" /> no
(depending on property "newsletter")

f:form.select

This ViewHelper generates a <select> dropdown list for the use with a form.

Basic usage

The most straightforward way is to supply an associative array as the “options” parameter.
The array key is used as option key, and the array value is used as human-readable name.

To pre-select a value, set “value” to the option key which should be selected. If the select box is a multi-select
box (multiple=”true”), then “value” can be an array as well.

Usage on domain objects

If you want to output domain objects, you can just pass them as array into the “options” parameter.
To define what domain object value should be used as option key, use the “optionValueField” variable. Same goes for optionLabelField.
If neither is given, the Identifier (UUID/uid) and the __toString() method are tried as fallbacks.

If the optionValueField variable is set, the getter named after that value is used to retrieve the option key.
If the optionLabelField variable is set, the getter named after that value is used to retrieve the option value.

If the prependOptionLabel variable is set, an option item is added in first position, bearing an empty string
or - if specified - the value of the prependOptionValue variable as value.

In the example below, the userArray is an array of “User” domain objects, with no array key specified. Thus the
method $user->getId() is called to retrieve the key, and $user->getFirstName() to retrieve the displayed value of
each entry. The “value” property now expects a domain object, and tests for object equivalence.

Translation of select content

The ViewHelper can be given a “translate” argument with configuration on how to translate option labels.
The array can have the following keys:
- “by” defines if translation by message id or original label is to be used (“id” or “label”)
- “using” defines if the option tag’s “value” or “label” should be used as translation input, defaults to “value”
- “locale” defines the locale identifier to use, optional, defaults to current locale
- “source” defines the translation source name, optional, defaults to “Main”
- “package” defines the package key of the translation source, optional, defaults to current package
- “prefix” defines a prefix to use for the message id – only works in combination with “by id”

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\SelectViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

	multiple (string, optional): if set, multiple select field

	size (string, optional): Size of input field

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	required (boolean, optional): Specifies that the select element requires at least one selected option

	options (array): Associative array with internal IDs as key, and the values are displayed in the select box

	optionValueField (string, optional): If specified, will call the appropriate getter on each object to determine the value.

	optionLabelField (string, optional): If specified, will call the appropriate getter on each object to determine the label.

	sortByOptionLabel (boolean, optional): If true, List will be sorted by label.

	selectAllByDefault (boolean, optional): If specified options are selected if none was set before.

	errorClass (string, optional): CSS class to set if there are errors for this ViewHelper

	translate (array, optional): Configures translation of ViewHelper output.

	prependOptionLabel (string, optional): If specified, will provide an option at first position with the specified label.

	prependOptionValue (string, optional): If specified, will provide an option at first position with the specified value. This argument is only respected if prependOptionLabel is set.

Examples

Basic usage:

<f:form.select name="paymentOptions" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" />

Expected result:

<select name="paymentOptions">
 <option value="payPal">PayPal International Services</option>
 <option value="visa">VISA Card</option>
</select>

Preselect a default value:

<f:form.select name="paymentOptions" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" value="visa" />

Expected result:

(Generates a dropdown box like above, except that "VISA Card" is selected.)

Use with domain objects:

<f:form.select name="users" options="{userArray}" optionValueField="id" optionLabelField="firstName" />

Expected result:

(Generates a dropdown box, using ids and first names of the User instances.)

Prepend a fixed option:

<f:form.select property="salutation" options="{salutations}" prependOptionLabel="- select one -" />

Expected result:

<select name="salutation">
 <option value="">- select one -</option>
 <option value="Mr">Mr</option>
 <option value="Mrs">Mrs</option>
 <option value="Ms">Ms</option>
</select>
(depending on variable "salutations")

Label translation:

<f:form.select name="paymentOption" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" translate="{by: 'id'}" />

Expected result:

(Generates a dropdown box and uses the values "payPal" and "visa" to look up
translations for those ids in the current package's "Main" XLIFF file.)

Label translation usign a prefix:

<f:form.select name="paymentOption" options="{payPal: 'PayPal International Services', visa: 'VISA Card'}" translate="{by: 'id', prefix: 'shop.paymentOptions.'}" />

Expected result:

(Generates a dropdown box and uses the values "shop.paymentOptions.payPal"
and "shop.paymentOptions.visa" to look up translations for those ids in the
current package's "Main" XLIFF file.)

f:form.submit

Creates a submit button.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\SubmitViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Defaults:

<f:form.submit value="Send Mail" />

Expected result:

<input type="submit" />

Dummy content for template preview:

<f:form.submit name="mySubmit" value="Send Mail"><button>dummy button</button></f:form.submit>

Expected result:

<input type="submit" name="mySubmit" value="Send Mail" />

f:form.textarea

Textarea view helper.
The value of the text area needs to be set via the “value” attribute, as with all other form ViewHelpers.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\TextareaViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	rows (int, optional): The number of rows of a text area

	cols (int, optional): The number of columns of a text area

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	required (boolean, optional): If the field should be marked as required or not

	placeholder (string, optional): The placeholder of the textarea

	autofocus (string, optional): Specifies that a text area should automatically get focus when the page loads

	maxlength (int, optional): The maxlength attribute of the textarea (will not be validated)

	errorClass (string, optional): CSS class to set if there are errors for this view helper

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.textarea name="myTextArea" value="This is shown inside the textarea" />

Expected result:

<textarea name="myTextArea">This is shown inside the textarea</textarea>

f:form.textfield

View Helper which creates a text field (<input type=”text”>).

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\TextfieldViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	required (boolean, optional): If the field should be marked as required or not

	maxlength (int, optional): The maxlength attribute of the input field (will not be validated)

	readonly (string, optional): The readonly attribute of the input field

	size (int, optional): The size of the input field

	placeholder (string, optional): The placeholder of the input field

	autofocus (string, optional): Specifies that a input field should automatically get focus when the page loads

	type (string, optional): The field type, e.g. “text”, “email”, “url” etc.

	errorClass (string, optional): CSS class to set if there are errors for this view helper

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.textfield name="myTextBox" value="default value" />

Expected result:

<input type="text" name="myTextBox" value="default value" />

f:form.upload

A view helper which generates an <input type=”file”> HTML element.
Make sure to set enctype=”multipart/form-data” on the form!

If a file has been uploaded successfully and the form is re-displayed due to validation errors,
this ViewHelper will render hidden fields that contain the previously generated resource so you
won’t have to upload the file again.

You can use a separate ViewHelper to display previously uploaded resources in order to remove/replace them.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Form\UploadViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	name (string, optional): Name of input tag

	value (mixed, optional): Value of input tag

	property (string, optional): Name of Object Property. If used in conjunction with <f:form object=”…”>, “name” and “value” properties will be ignored.

	disabled (boolean, optional): Specifies that the input element should be disabled when the page loads

	errorClass (string, optional): CSS class to set if there are errors for this view helper

	collection (string, optional): Name of the resource collection this file should be uploaded to

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

Examples

Example:

<f:form.upload name="file" />

Expected result:

<input type="file" name="file" />

Multiple Uploads:

<f:form.upload property="attachments.0.originalResource" />
<f:form.upload property="attachments.1.originalResource" />

Expected result:

<input type="file" name="formObject[attachments][0][originalResource]">
<input type="file" name="formObject[attachments][0][originalResource]">

Default resource:

<f:form.upload name="file" value="{someDefaultResource}" />

Expected result:

<input type="hidden" name="file[originallySubmittedResource][__identity]" value="<someDefaultResource-UUID>" />
<input type="file" name="file" />

Specifying the resource collection for the new resource:

<f:form.upload name="file" collection="invoices"/>

Expected result:

<input type="file" name="yourInvoice" />
<input type="hidden" name="yourInvoice[__collectionName]" value="invoices" />

f:format.base64Decode

Applies base64_decode to the input

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\Base64DecodeViewHelper

Arguments

	value (string, optional): string to format

f:format.bytes

Formats an integer with a byte count into human-readable form.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\BytesViewHelper

Arguments

	value (integer, optional): The incoming data to convert, or NULL if VH children should be used

	decimals (integer, optional): The number of digits after the decimal point

	decimalSeparator (string, optional): The decimal point character

	thousandsSeparator (string, optional): The character for grouping the thousand digits

Examples

Defaults:

{fileSize -> f:format.bytes()}

Expected result:

123 KB
// depending on the value of {fileSize}

Defaults:

{fileSize -> f:format.bytes(decimals: 2, decimalSeparator: ',', thousandsSeparator: ',')}

Expected result:

1,023.00 B
// depending on the value of {fileSize}

f:format.case

Modifies the case of an input string to upper- or lowercase or capitalization.
The default transformation will be uppercase as in mb_convert_case [1].

Possible modes are:

	lower

	Transforms the input string to its lowercase representation

	upper

	Transforms the input string to its uppercase representation

	capital

	Transforms the input string to its first letter upper-cased, i.e. capitalization

	uncapital

	Transforms the input string to its first letter lower-cased, i.e. uncapitalization

	capitalWords

	Transforms the input string to each containing word being capitalized

Note that the behavior will be the same as in the appropriate PHP function mb_convert_case [1];
especially regarding locale and multibyte behavior.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\CaseViewHelper

Arguments

	value (string, optional): The input value. If not given, the evaluated child nodes will be used

	mode (string, optional): The case to apply, must be one of this’ CASE_* constants. Defaults to uppercase application

f:format.crop

Use this view helper to crop the text between its opening and closing tags.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\CropViewHelper

Arguments

	maxCharacters (integer): Place where to truncate the string

	append (string, optional): What to append, if truncation happened

	value (string, optional): The input value which should be cropped. If not set, the evaluated contents of the child nodes will be used

Examples

Defaults:

<f:format.crop maxCharacters="10">This is some very long text</f:format.crop>

Expected result:

This is so...

Custom suffix:

<f:format.crop maxCharacters="17" append=" [more]">This is some very long text</f:format.crop>

Expected result:

This is some very [more]

Inline notation:

 f:format.crop(maxCharacters: '12')}">John Doe

Expected result:

John Doe

f:format.currency

Formats a given float to a currency representation.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\CurrencyViewHelper

Arguments

	forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string or NeosFlowI18nLocale

	currencySign (string, optional): (optional) The currency sign, eg $ or €.

	decimalSeparator (string, optional): (optional) The separator for the decimal point.

	thousandsSeparator (string, optional): (optional) The thousands separator.

	prependCurrency (boolean, optional): (optional) Indicates if currency symbol should be placed before or after the numeric value.

	separateCurrency (boolean, optional): (optional) Indicates if a space character should be placed between the number and the currency sign.

	decimals (integer, optional): (optional) The number of decimal places.

	currencyCode (string, optional): (optional) The ISO 4217 currency code of the currency to format. Used to set decimal places and rounding.

Examples

Defaults:

<f:format.currency>123.456</f:format.currency>

Expected result:

123,46

All parameters:

<f:format.currency currencySign="$" decimalSeparator="." thousandsSeparator="," prependCurrency="false", separateCurrency="true", decimals="2">54321</f:format.currency>

Expected result:

54,321.00 $

Inline notation:

{someNumber -> f:format.currency(thousandsSeparator: ',', currencySign: '€')}

Expected result:

54,321,00 €
(depending on the value of {someNumber})

Inline notation with current locale used:

{someNumber -> f:format.currency(currencySign: '€', forceLocale: true)}

Expected result:

54.321,00 €
(depending on the value of {someNumber} and the current locale)

Inline notation with specific locale used:

{someNumber -> f:format.currency(currencySign: 'EUR', forceLocale: 'de_DE')}

Expected result:

54.321,00 EUR
(depending on the value of {someNumber})

Inline notation with different position for the currency sign:

{someNumber -> f:format.currency(currencySign: '€', prependCurrency: 'true')}

Expected result:

€ 54.321,00
(depending on the value of {someNumber})

Inline notation with no space between the currency and no decimal places:

{someNumber -> f:format.currency(currencySign: '€', separateCurrency: 'false', decimals: '0')}

Expected result:

54.321€
(depending on the value of {someNumber})

f:format.date

Formats a DateTime object.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\DateViewHelper

Arguments

	forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string or NeosFlowI18nLocale

	date (mixed, optional): either a DateTime object or a string that is accepted by DateTime constructor

	format (string, optional): Format String which is taken to format the Date/Time if none of the locale options are set.

	localeFormatType (string, optional): Whether to format (according to locale set in $forceLocale) date, time or datetime. Must be one of NeosFlowI18nCldrReaderDatesReader::FORMAT_TYPE_*’s constants.

	localeFormatLength (string, optional): Format length if locale set in $forceLocale. Must be one of NeosFlowI18nCldrReaderDatesReader::FORMAT_LENGTH_*’s constants.

	cldrFormat (string, optional): Format string in CLDR format (see http://cldr.unicode.org/translation/date-time)

Examples

Defaults:

<f:format.date>{dateObject}</f:format.date>

Expected result:

1980-12-13
(depending on the current date)

Custom date format:

<f:format.date format="H:i">{dateObject}</f:format.date>

Expected result:

01:23
(depending on the current time)

strtotime string:

<f:format.date format="d.m.Y - H:i:s">+1 week 2 days 4 hours 2 seconds</f:format.date>

Expected result:

13.12.1980 - 21:03:42
(depending on the current time, see http://www.php.net/manual/en/function.strtotime.php)

output date from unix timestamp:

<f:format.date format="d.m.Y - H:i:s">@{someTimestamp}</f:format.date>

Expected result:

13.12.1980 - 21:03:42
(depending on the current time. Don't forget the "@" in front of the timestamp see http://www.php.net/manual/en/function.strtotime.php)

Inline notation:

{f:format.date(date: dateObject)}

Expected result:

1980-12-13
(depending on the value of {dateObject})

Inline notation (2nd variant):

{dateObject -> f:format.date()}

Expected result:

1980-12-13
(depending on the value of {dateObject})

Inline notation, outputting date only, using current locale:

{dateObject -> f:format.date(localeFormatType: 'date', forceLocale: true)}

Expected result:

13.12.1980
(depending on the value of {dateObject} and the current locale)

Inline notation with specific locale used:

{dateObject -> f:format.date(forceLocale: 'de_DE')}

Expected result:

13.12.1980 11:15:42
(depending on the value of {dateObject})

f:format.htmlentities

Applies htmlentities() escaping to a value

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\HtmlentitiesViewHelper

Arguments

	value (string, optional): string to format

	keepQuotes (boolean, optional): if true, single and double quotes won’t be replaced (sets ENT_NOQUOTES flag)

	encoding (string, optional): the encoding format

	doubleEncode (string, optional): If false existing html entities won’t be encoded, the default is to convert everything.

f:format.htmlentitiesDecode

Applies html_entity_decode() to a value

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\HtmlentitiesDecodeViewHelper

Arguments

	value (string, optional): string to format

	keepQuotes (boolean, optional): if true, single and double quotes won’t be replaced (sets ENT_NOQUOTES flag)

	encoding (string, optional): the encoding format

f:format.identifier

This ViewHelper renders the identifier of a persisted object (if it has an identity).
Usually the identifier is the UUID of the object, but it could be an array of the
identity properties, too.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\IdentifierViewHelper

Arguments

	value (object, optional): the object to render the identifier for, or NULL if VH children should be used

f:format.json

Wrapper for PHPs json_encode function.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\JsonViewHelper

Arguments

	value (mixed, optional): The incoming data to convert, or NULL if VH children should be used

	forceObject (boolean, optional): Outputs an JSON object rather than an array

Examples

encoding a view variable:

{someArray -> f:format.json()}

Expected result:

["array","values"]
// depending on the value of {someArray}

associative array:

{f:format.json(value: {foo: 'bar', bar: 'baz'})}

Expected result:

{"foo":"bar","bar":"baz"}

non-associative array with forced object:

{f:format.json(value: {0: 'bar', 1: 'baz'}, forceObject: true)}

Expected result:

{"0":"bar","1":"baz"}

f:format.nl2br

Wrapper for PHPs nl2br function.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\Nl2brViewHelper

Arguments

	value (string, optional): string to format

f:format.number

Formats a number with custom precision, decimal point and grouped thousands.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\NumberViewHelper

Arguments

	forceLocale (mixed, optional): Whether if, and what, Locale should be used. May be boolean, string or NeosFlowI18nLocale

	decimals (integer, optional): The number of digits after the decimal point

	decimalSeparator (string, optional): The decimal point character

	thousandsSeparator (string, optional): The character for grouping the thousand digits

	localeFormatLength (string, optional): Format length if locale set in $forceLocale. Must be one of NeosFlowI18nCldrReaderNumbersReader::FORMAT_LENGTH_*’s constants.

f:format.padding

Formats a string using PHPs str_pad function.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\PaddingViewHelper

Arguments

	padLength (integer): Length of the resulting string. If the value of pad_length is negative or less than the length of the input string, no padding takes place.

	padString (string, optional): The padding string

	padType (string, optional): Append the padding at this site (Possible values: right,left,both. Default: right)

	value (string, optional): string to format

f:format.stripTags

Removes tags from the given string (applying PHPs strip_tags() function)

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\StripTagsViewHelper

Arguments

	value (string, optional): string to format

f:format.urlencode

Encodes the given string according to http://www.faqs.org/rfcs/rfc3986.html (applying PHPs rawurlencode() function)

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Format\UrlencodeViewHelper

Arguments

	value (string, optional): string to format

f:link.action

A view helper for creating links to actions.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Link\ActionViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

	name (string, optional): Specifies the name of an anchor

	rel (string, optional): Specifies the relationship between the current document and the linked document

	rev (string, optional): Specifies the relationship between the linked document and the current document

	target (string, optional): Specifies where to open the linked document

	action (string): Target action

	arguments (array, optional): Arguments

	controller (string, optional): Target controller. If NULL current controllerName is used

	package (string, optional): Target package. if NULL current package is used

	subpackage (string, optional): Target subpackage. if NULL current subpackage is used

	section (string, optional): The anchor to be added to the URI

	format (string, optional): The requested format, e.g. “.html”

	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)

	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true

	useParentRequest (boolean, optional): If set, the parent Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care

	absolute (boolean, optional): By default this ViewHelper renders links with absolute URIs. If this is false, a relative URI is created instead

	useMainRequest (boolean, optional): If set, the main Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care

Examples

Defaults:

<f:link.action>some link</f:link.action>

Expected result:

some link
(depending on routing setup and current package/controller/action)

Additional arguments:

<f:link.action action="myAction" controller="MyController" package="YourCompanyName.MyPackage" subpackage="YourCompanyName.MySubpackage" arguments="{key1: 'value1', key2: 'value2'}">some link</f:link.action>

Expected result:

some link
(depending on routing setup)

f:link.email

Email link view helper.
Generates an email link.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Link\EmailViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

	name (string, optional): Specifies the name of an anchor

	rel (string, optional): Specifies the relationship between the current document and the linked document

	rev (string, optional): Specifies the relationship between the linked document and the current document

	target (string, optional): Specifies where to open the linked document

	email (string): The email address to be turned into a link.

Examples

basic email link:

<f:link.email email="foo@bar.tld" />

Expected result:

foo@bar.tld

Email link with custom linktext:

<f:link.email email="foo@bar.tld">some custom content</f:link.email>

Expected result:

some custom content

f:link.external

A view helper for creating links to external targets.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Link\ExternalViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

	name (string, optional): Specifies the name of an anchor

	rel (string, optional): Specifies the relationship between the current document and the linked document

	rev (string, optional): Specifies the relationship between the linked document and the current document

	target (string, optional): Specifies where to open the linked document

	uri (string): the URI that will be put in the href attribute of the rendered link tag

	defaultScheme (string, optional): scheme the href attribute will be prefixed with if specified $uri does not contain a scheme already

Examples

custom default scheme:

<f:link.external uri="neos.io" defaultScheme="sftp">external ftp link</f:link.external>

Expected result:

external ftp link

f:renderChildren

Render the inner parts of a Widget.
This ViewHelper can only be used in a template which belongs to a Widget Controller.

It renders everything inside the Widget ViewHelper, and you can pass additional
arguments.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\RenderChildrenViewHelper

Arguments

	arguments (array, optional)

Examples

Basic usage:

<!-- in the widget template -->
Header
<f:renderChildren arguments="{foo: 'bar'}" />
Footer

<-- in the outer template, using the widget -->

<x:widget.someWidget>
 Foo: {foo}
</x:widget.someWidget>

Expected result:

Header
Foo: bar
Footer

f:security.csrfToken

ViewHelper that outputs a CSRF token which is required for “unsafe” requests (e.g. POST, PUT, DELETE, …).

Note: You won’t need this ViewHelper if you use the Form ViewHelper, because that creates a hidden field with
the CSRF token for unsafe requests automatically. This ViewHelper is mainly useful in conjunction with AJAX.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\CsrfTokenViewHelper

f:security.ifAccess

This view helper implements an ifAccess/else condition.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\IfAccessViewHelper

Arguments

	then (mixed, optional): Value to be returned if the condition if met.

	else (mixed, optional): Value to be returned if the condition if not met.

	condition (boolean, optional): Condition expression conforming to Fluid boolean rules

	privilegeTarget (string): Condition expression conforming to Fluid boolean rules

	parameters (array, optional): Condition expression conforming to Fluid boolean rules

f:security.ifAuthenticated

This view helper implements an ifAuthenticated/else condition.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\IfAuthenticatedViewHelper

Arguments

	then (mixed, optional): Value to be returned if the condition if met.

	else (mixed, optional): Value to be returned if the condition if not met.

	condition (boolean, optional): Condition expression conforming to Fluid boolean rules

f:security.ifHasRole

This view helper implements an ifHasRole/else condition.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Security\IfHasRoleViewHelper

Arguments

	then (mixed, optional): Value to be returned if the condition if met.

	else (mixed, optional): Value to be returned if the condition if not met.

	condition (boolean, optional): Condition expression conforming to Fluid boolean rules

	role (mixed): The role or role identifier.

	packageKey (string, optional): PackageKey of the package defining the role.

	account (NeosFlowSecurityAccount, optional): If specified, this subject of this check is the given Account instead of the currently authenticated account

f:translate

Returns translated message using source message or key ID.

Also replaces all placeholders with formatted versions of provided values.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\TranslateViewHelper

Arguments

	id (string, optional): Id to use for finding translation (trans-unit id in XLIFF)

	value (string, optional): If $key is not specified or could not be resolved, this value is used. If this argument is not set, child nodes will be used to render the default

	arguments (array, optional): Numerically indexed array of values to be inserted into placeholders

	source (string, optional): Name of file with translations (use / as a directory separator)

	package (string, optional): Target package key. If not set, the current package key will be used

	quantity (mixed, optional): A number to find plural form for (float or int), NULL to not use plural forms

	locale (string, optional): An identifier of locale to use (NULL for use the default locale)

Examples

Translation by id:

<f:translate id="user.unregistered">Unregistered User</f:translate>

Expected result:

translation of label with the id "user.unregistered" and a fallback to "Unregistered User"

Inline notation:

{f:translate(id: 'some.label.id', value: 'fallback result')}

Expected result:

translation of label with the id "some.label.id" and a fallback to "fallback result"

Custom source and locale:

<f:translate id="some.label.id" source="LabelsCatalog" locale="de_DE"/>

Expected result:

translation from custom source "SomeLabelsCatalog" for locale "de_DE"

Custom source from other package:

<f:translate id="some.label.id" source="LabelsCatalog" package="OtherPackage"/>

Expected result:

translation from custom source "LabelsCatalog" in "OtherPackage"

Arguments:

<f:translate arguments="{0: 'foo', 1: '99.9'}"><![CDATA[Untranslated {0} and {1,number}]]></f:translate>

Expected result:

translation of the label "Untranslated foo and 99.9"

Translation by label:

<f:translate>Untranslated label</f:translate>

Expected result:

translation of the label "Untranslated label"

f:uri.action

A view helper for creating URIs to actions.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\ActionViewHelper

Arguments

	action (string): Target action

	arguments (array, optional): Arguments

	controller (string, optional): Target controller. If NULL current controllerName is used

	package (string, optional): Target package. if NULL current package is used

	subpackage (string, optional): Target subpackage. if NULL current subpackage is used

	section (string, optional): The anchor to be added to the URI

	format (string, optional): The requested format, e.g. “.html”

	additionalParams (array, optional): additional query parameters that won’t be prefixed like $arguments (overrule $arguments)

	absolute (boolean, optional): By default this ViewHelper renders links with absolute URIs. If this is false, a relative URI is created instead

	addQueryString (boolean, optional): If set, the current query parameters will be kept in the URI

	argumentsToBeExcludedFromQueryString (array, optional): arguments to be removed from the URI. Only active if $addQueryString = true

	useParentRequest (boolean, optional): If set, the parent Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care

	useMainRequest (boolean, optional): If set, the main Request will be used instead of the current one. Note: using this argument can be a sign of undesired tight coupling, use with care

Examples

Defaults:

<f:uri.action>some link</f:uri.action>

Expected result:

currentpackage/currentcontroller
(depending on routing setup and current package/controller/action)

Additional arguments:

<f:uri.action action="myAction" controller="MyController" package="YourCompanyName.MyPackage" subpackage="YourCompanyName.MySubpackage" arguments="{key1: 'value1', key2: 'value2'}">some link</f:uri.action>

Expected result:

mypackage/mycontroller/mysubpackage/myaction?key1=value1&key2=value2
(depending on routing setup)

f:uri.email

Email uri view helper.
Currently the specified email is simply prepended by “mailto:” but we might add spam protection.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\EmailViewHelper

Arguments

	email (string): The email address to be turned into a mailto uri.

Examples

basic email uri:

<f:uri.email email="foo@bar.tld" />

Expected result:

mailto:foo@bar.tld

f:uri.external

A view helper for creating URIs to external targets.
Currently the specified URI is simply passed through.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\ExternalViewHelper

Arguments

	uri (string): target URI

	defaultScheme (string, optional): target URI

Examples

custom default scheme:

<f:uri.external uri="neos.io" defaultScheme="sftp" />

Expected result:

sftp://neos.io

f:uri.resource

A view helper for creating URIs to resources.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Uri\ResourceViewHelper

Arguments

	path (string, optional): Location of the resource, can be either a path relative to the Public resource directory of the package or a resource://… URI

	package (string, optional): Target package key. If not set, the current package key will be used

	resource (NeosFlowResourceManagementPersistentResource, optional): If specified, this resource object is used instead of the path and package information

	localize (bool, optional): Whether resource localization should be attempted or not.

Examples

Defaults:

<link href="{f:uri.resource(path: 'CSS/Stylesheet.css')}" rel="stylesheet" />

Expected result:

<link href="http://yourdomain.tld/_Resources/Static/YourPackage/CSS/Stylesheet.css" rel="stylesheet" />
(depending on current package)

Other package resource:

{f:uri.resource(path: 'gfx/SomeImage.png', package: 'DifferentPackage')}

Expected result:

http://yourdomain.tld/_Resources/Static/DifferentPackage/gfx/SomeImage.png
(depending on domain)

Static resource URI:

{f:uri.resource(path: 'resource://DifferentPackage/Public/gfx/SomeImage.png')}

Expected result:

http://yourdomain.tld/_Resources/Static/DifferentPackage/gfx/SomeImage.png
(depending on domain)

Persistent resource object:

Expected result:

(depending on your resource object)

f:validation.ifHasErrors

This view helper allows to check whether validation errors adhere to the current request.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Validation\IfHasErrorsViewHelper

Arguments

	then (mixed, optional): Value to be returned if the condition if met.

	else (mixed, optional): Value to be returned if the condition if not met.

	for (string, optional): The argument or property name or path to check for error(s). If not set any validation error leads to the “then child” to be rendered

f:validation.results

Validation results view helper

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Validation\ResultsViewHelper

Arguments

	for (string, optional): The name of the error name (e.g. argument name or property name). This can also be a property path (like blog.title), and will then only display the validation errors of that property.

	as (string, optional): The name of the variable to store the current error

Examples

Output error messages as a list:

<f:validation.results>
 <f:if condition="{validationResults.flattenedErrors}">
 <ul class="errors">
 <f:for each="{validationResults.flattenedErrors}" as="errors" key="propertyPath">
 {propertyPath}

 <f:for each="{errors}" as="error">
 {error.code}: {error}
 </f:for>

 </f:for>

 </f:if>
</f:validation.results>

Expected result:

<ul class="errors">
 1234567890: Validation errors for argument "newBlog"

Output error messages for a single property:

<f:validation.results for="someProperty">
 <f:if condition="{validationResults.flattenedErrors}">
 <ul class="errors">
 <f:for each="{validationResults.errors}" as="error">
 {error.code}: {error}
 </f:for>

 </f:if>
</f:validation.results>

Expected result:

<ul class="errors">
 1234567890: Some error message

f:widget.autocomplete

Usage:
<f:input id=”name” … />
<f:widget.autocomplete for=”name” objects=”{posts}” searchProperty=”author”>

	Make sure to include jQuery and jQuery UI in the HTML, like that:

	<script type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js”></script>
<script type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.4/jquery-ui.min.js”></script>
<link rel=”stylesheet” href=”http://ajax.googleapis.com/ajax/libs/jqueryui/1.8.3/themes/base/jquery-ui.css” type=”text/css” media=”all” />
<link rel=”stylesheet” href=”http://static.jquery.com/ui/css/demo-docs-theme/ui.theme.css” type=”text/css” media=”all” />

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\AutocompleteViewHelper

Arguments

	objects (NeosFlowPersistenceQueryResultInterface)

	for (string)

	searchProperty (string)

	configuration (array, optional)

	widgetId (string, optional): Unique identifier of the widget instance

f:widget.link

widget.link ViewHelper
This ViewHelper can be used inside widget templates in order to render links pointing to widget actions

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\LinkViewHelper

Arguments

	additionalAttributes (array, optional): Additional tag attributes. They will be added directly to the resulting HTML tag.

	data (array, optional): Additional data-* attributes. They will each be added with a “data-” prefix.

	action (string, optional): Target action

	arguments (array, optional): Arguments

	section (string, optional): The anchor to be added to the URI

	format (string, optional): The requested format, e.g. “.html

	ajax (boolean, optional): true if the URI should be to an AJAX widget, false otherwise.

	includeWidgetContext (boolean, optional): true if the URI should contain the serialized widget context (only useful for stateless AJAX widgets)

	class (string, optional): CSS class(es) for this element

	dir (string, optional): Text direction for this HTML element. Allowed strings: “ltr” (left to right), “rtl” (right to left)

	id (string, optional): Unique (in this file) identifier for this HTML element.

	lang (string, optional): Language for this element. Use short names specified in RFC 1766

	style (string, optional): Individual CSS styles for this element

	title (string, optional): Tooltip text of element

	accesskey (string, optional): Keyboard shortcut to access this element

	tabindex (integer, optional): Specifies the tab order of this element

	onclick (string, optional): JavaScript evaluated for the onclick event

	name (string, optional): Specifies the name of an anchor

	rel (string, optional): Specifies the relationship between the current document and the linked document

	rev (string, optional): Specifies the relationship between the linked document and the current document

	target (string, optional): Specifies where to open the linked document

f:widget.paginate

This ViewHelper renders a Pagination of objects.

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\PaginateViewHelper

Arguments

	objects (NeosFlowPersistenceQueryResultInterface)

	as (string)

	configuration (array, optional)

	widgetId (string, optional): Unique identifier of the widget instance

f:widget.uri

widget.uri ViewHelper
This ViewHelper can be used inside widget templates in order to render URIs pointing to widget actions

	Implementation

	Neos\FluidAdaptor\ViewHelpers\Widget\UriViewHelper

Arguments

	action (string, optional): Target action

	arguments (array, optional): Arguments

	section (string, optional): The anchor to be added to the URI

	format (string, optional): The requested format, e.g. “.html

	ajax (boolean, optional): true if the URI should be to an AJAX widget, false otherwise.

	includeWidgetContext (boolean, optional): true if the URI should contain the serialized widget context (only useful for stateless AJAX widgets)

Predefined Constants Reference

The following constants are defined by the Flow core.

Note

Every …PATH… constant contains forward slashes (/)
as directory separator, no matter what operating system Flow is run on.

Also note that every such path is absolute and has a trailing
directory separator.

	FLOW_SAPITYPE (string)

	The current request type, which is either CLI or Web.

	FLOW_PATH_FLOW (string)

	The absolute path to the Flow package itself

	FLOW_PATH_ROOT (string)

	The absolute path to the root of this Flow distribution, containing for example the Web, Configuration,
Data, Packages etc. directories.

	FLOW_PATH_WEB (string)

	Absolute path to the Web folder where, among others, the index.php file resides.

	FLOW_PATH_CONFIGURATION (string)

	Absolute path to the Configuration directory where the .yaml configuration files reside.

	FLOW_PATH_DATA (string)

	Absolute path to the Data directory, containing the Logs, Persistent, Temporary,
and other directories.

	FLOW_PATH_PACKAGES (string)

	Absolute path to the Packages directory, containing the Application, Framework,
Sites, Library, and similar package directories.

	FLOW_VERSION_BRANCH (string)

	The current Flow branch version, for example 1.2.

Flow Signals Reference

This reference was automatically generated from code on 2020-12-02

AbstractAdvice (Neos\Flow\Aop\Advice\AbstractAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AbstractBackend (Neos\Flow\Persistence\Generic\Backend\AbstractBackend)

This class contains the following signals.

removedObject

Autogenerated Proxy Method

persistedObject

Autogenerated Proxy Method

ActionRequest (Neos\Flow\Mvc\ActionRequest)

This class contains the following signals.

requestDispatched

Autogenerated Proxy Method

AfterAdvice (Neos\Flow\Aop\Advice\AfterAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AfterReturningAdvice (Neos\Flow\Aop\Advice\AfterReturningAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AfterThrowingAdvice (Neos\Flow\Aop\Advice\AfterThrowingAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AroundAdvice (Neos\Flow\Aop\Advice\AroundAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

AuthenticationProviderManager (Neos\Flow\Security\Authentication\AuthenticationProviderManager)

This class contains the following signals.

authenticatedToken

Autogenerated Proxy Method

loggedOut

Autogenerated Proxy Method

BeforeAdvice (Neos\Flow\Aop\Advice\BeforeAdvice)

This class contains the following signals.

adviceInvoked

Emits a signal when an Advice is invoked

The advice is not proxyable, so the signal is dispatched manually here.

Bootstrap (Neos\Flow\Core\Bootstrap)

This class contains the following signals.

finishedCompiletimeRun

Emits a signal that the compile run was finished.

finishedRuntimeRun

Emits a signal that the runtime run was finished.

bootstrapShuttingDown

Emits a signal that the bootstrap finished and is shutting down.

CacheCommandController (Neos\Flow\Command\CacheCommandController)

This class contains the following signals.

warmupCaches

Autogenerated Proxy Method

ConfigurationManager (Neos\Flow\Configuration\ConfigurationManager)

This class contains the following signals.

configurationManagerReady

Emits a signal after The ConfigurationManager has been loaded

CoreCommandController (Neos\Flow\Command\CoreCommandController)

This class contains the following signals.

finishedCompilationRun

Signals that the compile command was successfully finished.

Dispatcher (Neos\Flow\Mvc\Dispatcher)

This class contains the following signals.

beforeControllerInvocation

Autogenerated Proxy Method

afterControllerInvocation

Autogenerated Proxy Method

DoctrineCommandController (Neos\Flow\Command\DoctrineCommandController)

This class contains the following signals.

afterDatabaseMigration

Autogenerated Proxy Method

EntityManagerFactory (Neos\Flow\Persistence\Doctrine\EntityManagerFactory)

This class contains the following signals.

beforeDoctrineEntityManagerCreation

Autogenerated Proxy Method

afterDoctrineEntityManagerCreation

Autogenerated Proxy Method

PackageManager (Neos\Flow\Package\PackageManager)

This class contains the following signals.

packageStatesUpdated

Emits a signal when package states have been changed (e.g. when a package was created)

The advice is not proxyable, so the signal is dispatched manually here.

PersistenceManager (Neos\Flow\Persistence\Doctrine\PersistenceManager)

This class contains the following signals.

allObjectsPersisted

Autogenerated Proxy Method

PersistenceManager (Neos\Flow\Persistence\Generic\PersistenceManager)

This class contains the following signals.

allObjectsPersisted

Autogenerated Proxy Method

PolicyService (Neos\Flow\Security\Policy\PolicyService)

This class contains the following signals.

configurationLoaded

Autogenerated Proxy Method

rolesInitialized

Autogenerated Proxy Method

SlaveRequestHandler (Neos\Flow\Cli\SlaveRequestHandler)

This class contains the following signals.

dispatchedCommandLineSlaveRequest

Emits a signal that a CLI slave request was dispatched.

TYPO3 Fluid ViewHelper Reference

This reference was automatically generated from code on 2020-12-02

f:alias

Declares new variables which are aliases of other variables.
Takes a “map”-Parameter which is an associative array which defines the shorthand mapping.

The variables are only declared inside the <f:alias>…</f:alias>-tag. After the
closing tag, all declared variables are removed again.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\AliasViewHelper

Arguments

	map (array): Array that specifies which variables should be mapped to which alias

Examples

Single alias:

<f:alias map="{x: 'foo'}">{x}</f:alias>

Expected result:

foo

Multiple mappings:

<f:alias map="{x: foo.bar.baz, y: foo.bar.baz.name}">
 {x.name} or {y}
</f:alias>

Expected result:

[name] or [name]
depending on {foo.bar.baz}

f:cache.disable

ViewHelper to disable template compiling

Inserting this ViewHelper at any point in the template,
including inside conditions which do not get rendered,
will forcibly disable the caching/compiling of the full
template file to a PHP class.

Use this if for whatever reason your platform is unable
to create or load PHP classes (for example on read-only
file systems or when using an incompatible default cache
backend).

Passes through anything you place inside the ViewHelper,
so can safely be used as container tag, as self-closing
or with inline syntax - all with the same result.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Cache\DisableViewHelper

f:cache.static

ViewHelper to force compiling to a static string

Used around chunks of template code where you want the
output of said template code to be compiled to a static
string (rather than a collection of compiled nodes, as
is the usual behavior).

The effect is that none of the child ViewHelpers or nodes
used inside this tag will be evaluated when rendering the
template once it is compiled. It will essentially replace
all logic inside the tag with a plain string output.

Works by turning the compile method into a method that
renders the child nodes and returns the resulting content
directly as a string variable.

You can use this with great effect to further optimise the
performance of your templates: in use cases where chunks of
template code depend on static variables (like thoese in
{settings} for example) and those variables never change,
and the template uses no other dynamic variables, forcing
the template to compile that chunk to a static string can
save a lot of operations when rendering the compiled template.

NB: NOT TO BE USED FOR CACHING ANYTHING OTHER THAN STRING-
COMPATIBLE OUTPUT!

USE WITH CARE! WILL PRESERVE EVERYTHING RENDERED, INCLUDING
POTENTIALLY SENSITIVE DATA CONTAINED IN OUTPUT!

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Cache\StaticViewHelper

f:cache.warmup

ViewHelper to insert variables which only apply during
cache warmup and only apply if no other variables are
specified for the warmup process.

If a chunk of template code is impossible to compile
without additional variables, for example when rendering
sections or partials using dynamic names, you can use this
ViewHelper around that chunk and specify a set of variables
which will be assigned only while compiling the template
and only when this is done as part of cache warmup. The
template chunk can then be compiled using those default
variables.

Note: this does not imply that only those variable values
will be used by the compiled template. It only means that
DEFAULT values of vital variables will be present during
compiling.

If you find yourself completely unable to properly warm up
a specific template file even with use of this ViewHelper,
then you can consider using f:cache.disable to prevent
the template compiler from even attempting to compile it.

USE WITH CARE! SOME EDGE CASES OF FOR EXAMPLE VIEWHELPERS
WHICH REQUIRE SPECIAL VARIABLE TYPES MAY NOT BE SUPPORTED
HERE DUE TO THE RUDIMENTARY NATURE OF VARIABLES YOU DEFINE.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Cache\WarmupViewHelper

Arguments

	variables (array, optional): Array of variables to assign ONLY when compiling. See main class documentation.

f:case

Case view helper that is only usable within the SwitchViewHelper.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\CaseViewHelper

Arguments

	value (mixed): Value to match in this case

f:comment

This ViewHelper prevents rendering of any content inside the tag
Note: Contents of the comment will still be parsed thus throwing an
Exception if it contains syntax errors. You can put child nodes in
CDATA tags to avoid this.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\CommentViewHelper

Examples

Commenting out fluid code:

Before
<f:comment>
 This is completely hidden.
 <f:debug>This does not get rendered</f:debug>
</f:comment>
After

Expected result:

Before
After

Prevent parsing:

<f:comment><![CDATA[
 <f:some.invalid.syntax />
]]></f:comment>

f:count

This ViewHelper counts elements of the specified array or countable object.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\CountViewHelper

Arguments

	subject (array, optional): Countable subject, array or Countable

Examples

Count array elements:

<f:count subject="{0:1, 1:2, 2:3, 3:4}" />

Expected result:

4

inline notation:

{objects -> f:count()}

Expected result:

10 (depending on the number of items in {objects})

f:cycle

This ViewHelper cycles through the specified values.
This can be often used to specify CSS classes for example.
Note: To achieve the “zebra class” effect in a loop you can also use the “iteration” argument of the for ViewHelper.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\CycleViewHelper

Arguments

	values (array, optional): The array or object implementing ArrayAccess (for example SplObjectStorage) to iterated over

	as (strong): The name of the iteration variable

Examples

Simple:

<f:for each="{0:1, 1:2, 2:3, 3:4}" as="foo"><f:cycle values="{0: 'foo', 1: 'bar', 2: 'baz'}" as="cycle">{cycle}</f:cycle></f:for>

Expected result:

foobarbazfoo

Alternating CSS class:

 <f:for each="{0:1, 1:2, 2:3, 3:4}" as="foo">
 <f:cycle values="{0: 'odd', 1: 'even'}" as="zebraClass">
 <li class="{zebraClass}">{foo}
 </f:cycle>
 </f:for>

Expected result:

 <li class="odd">1
 <li class="even">2
 <li class="odd">3
 <li class="even">4

f:debug

<code title=”inline notation and custom title”>
{object -> f:debug(title: ‘Custom title’)}
</code>
<output>
all properties of {object} nicely highlighted (with custom title)
</output>

<code title=”only output the type”>
{object -> f:debug(typeOnly: true)}
</code>
<output>
the type or class name of {object}
</output>

Note: This view helper is only meant to be used during development

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\DebugViewHelper

Arguments

	typeOnly (boolean, optional): If TRUE, debugs only the type of variables

	levels (integer, optional): Levels to render when rendering nested objects/arrays

	html (boolean, optional): Render HTML. If FALSE, output is indented plaintext

Examples

inline notation and custom title:

{object -> f:debug(title: 'Custom title')}

Expected result:

all properties of {object} nicely highlighted (with custom title)

only output the type:

{object -> f:debug(typeOnly: true)}

Expected result:

the type or class name of {object}

f:defaultCase

A view helper which specifies the “default” case when used within the SwitchViewHelper.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\DefaultCaseViewHelper

f:else

Else-Branch of a condition. Only has an effect inside of “If”. See the If-ViewHelper for documentation.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\ElseViewHelper

Arguments

	if (boolean, optional): Condition expression conforming to Fluid boolean rules

Examples

Output content if condition is not met:

<f:if condition="{someCondition}">
 <f:else>
 condition was not true
 </f:else>
</f:if>

Expected result:

Everything inside the "else" tag is displayed if the condition evaluates to FALSE.
Otherwise nothing is outputted in this example.

f:for

Loop view helper which can be used to iterate over arrays.
Implements what a basic foreach()-PHP-method does.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\ForViewHelper

Arguments

	each (array): The array or SplObjectStorage to iterated over

	as (string): The name of the iteration variable

	key (string, optional): Variable to assign array key to

	reverse (boolean, optional): If TRUE, iterates in reverse

	iteration (string, optional): The name of the variable to store iteration information (index, cycle, isFirst, isLast, isEven, isOdd)

Examples

Simple Loop:

<f:for each="{0:1, 1:2, 2:3, 3:4}" as="foo">{foo}</f:for>

Expected result:

1234

Output array key:

 <f:for each="{fruit1: 'apple', fruit2: 'pear', fruit3: 'banana', fruit4: 'cherry'}" as="fruit" key="label">
 {label}: {fruit}
 </f:for>

Expected result:

 fruit1: apple
 fruit2: pear
 fruit3: banana
 fruit4: cherry

Iteration information:

 <f:for each="{0:1, 1:2, 2:3, 3:4}" as="foo" iteration="fooIterator">
 Index: {fooIterator.index} Cycle: {fooIterator.cycle} Total: {fooIterator.total}{f:if(condition: fooIterator.isEven, then: ' Even')}{f:if(condition: fooIterator.isOdd, then: ' Odd')}{f:if(condition: fooIterator.isFirst, then: ' First')}{f:if(condition: fooIterator.isLast, then: ' Last')}
 </f:for>

Expected result:

 Index: 0 Cycle: 1 Total: 4 Odd First
 Index: 1 Cycle: 2 Total: 4 Even
 Index: 2 Cycle: 3 Total: 4 Odd
 Index: 3 Cycle: 4 Total: 4 Even Last

f:format.cdata

Outputs an argument/value without any escaping and wraps it with CDATA tags.

PAY SPECIAL ATTENTION TO SECURITY HERE (especially Cross Site Scripting),
as the output is NOT SANITIZED!

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Format\CdataViewHelper

Arguments

	value (mixed, optional): The value to output

Examples

Child nodes:

<f:format.cdata>{string}</f:format.cdata>

Expected result:

<![CDATA[(Content of {string} without any conversion/escaping)]]>

Value attribute:

<f:format.cdata value="{string}" />

Expected result:

<![CDATA[(Content of {string} without any conversion/escaping)]]>

Inline notation:

{string -> f:format.cdata()}

Expected result:

<![CDATA[(Content of {string} without any conversion/escaping)]]>

f:format.htmlspecialchars

Applies htmlspecialchars() escaping to a value

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Format\HtmlspecialcharsViewHelper

Arguments

	value (string, optional): Value to format

	keepQuotes (boolean, optional): If TRUE quotes will not be replaced (ENT_NOQUOTES)

	encoding (string, optional): Encoding

	doubleEncode (boolean, optional): If FALSE html entities will not be encoded

f:format.printf

A view helper for formatting values with printf. Either supply an array for
the arguments or a single value.
See http://www.php.net/manual/en/function.sprintf.php

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Format\PrintfViewHelper

Arguments

	value (string, optional): String to format

	arguments (array, optional): The arguments for vsprintf

Examples

Scientific notation:

<f:format.printf arguments="{number: 362525200}">%.3e</f:format.printf>

Expected result:

3.625e+8

Argument swapping:

<f:format.printf arguments="{0: 3, 1: 'Kasper'}">%2$s is great, TYPO%1$d too. Yes, TYPO%1$d is great and so is %2$s!</f:format.printf>

Expected result:

Kasper is great, TYPO3 too. Yes, TYPO3 is great and so is Kasper!

Single argument:

<f:format.printf arguments="{1: 'TYPO3'}">We love %s</f:format.printf>

Expected result:

We love TYPO3

Inline notation:

{someText -> f:format.printf(arguments: {1: 'TYPO3'})}

Expected result:

We love TYPO3

f:format.raw

Outputs an argument/value without any escaping. Is normally used to output
an ObjectAccessor which should not be escaped, but output as-is.

PAY SPECIAL ATTENTION TO SECURITY HERE (especially Cross Site Scripting),
as the output is NOT SANITIZED!

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\Format\RawViewHelper

Arguments

	value (mixed, optional): The value to output

Examples

Child nodes:

<f:format.raw>{string}</f:format.raw>

Expected result:

(Content of {string} without any conversion/escaping)

Value attribute:

<f:format.raw value="{string}" />

Expected result:

(Content of {string} without any conversion/escaping)

Inline notation:

{string -> f:format.raw()}

Expected result:

(Content of {string} without any conversion/escaping)

f:groupedFor

Grouped loop view helper.
Loops through the specified values.

The groupBy argument also supports property paths.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\GroupedForViewHelper

Arguments

	each (array): The array or SplObjectStorage to iterated over

	as (string): The name of the iteration variable

	groupBy (string): Group by this property

	groupKey (string, optional): The name of the variable to store the current group

Examples

Simple:

<f:groupedFor each="{0: {name: 'apple', color: 'green'}, 1: {name: 'cherry', color: 'red'}, 2: {name: 'banana', color: 'yellow'}, 3: {name: 'strawberry', color: 'red'}}" as="fruitsOfThisColor" groupBy="color">
 <f:for each="{fruitsOfThisColor}" as="fruit">
 {fruit.name}
 </f:for>
</f:groupedFor>

Expected result:

apple cherry strawberry banana

Two dimensional list:

 <f:groupedFor each="{0: {name: 'apple', color: 'green'}, 1: {name: 'cherry', color: 'red'}, 2: {name: 'banana', color: 'yellow'}, 3: {name: 'strawberry', color: 'red'}}" as="fruitsOfThisColor" groupBy="color" groupKey="color">

 {color} fruits:

 <f:for each="{fruitsOfThisColor}" as="fruit" key="label">
 {label}: {fruit.name}
 </f:for>

 </f:groupedFor>

Expected result:

 green fruits

 0: apple

 red fruits

 1: cherry

 3: strawberry

 yellow fruits

 2: banana

f:if

This view helper implements an if/else condition.

Conditions:

As a condition is a boolean value, you can just use a boolean argument.
Alternatively, you can write a boolean expression there.
Boolean expressions have the following form:
XX Comparator YY
Comparator is one of: ==, !=, <, <=, >, >= and %
The % operator converts the result of the % operation to boolean.

XX and YY can be one of:
- number
- Object Accessor
- Array
- a ViewHelper
- string

<f:if condition="{rank} > 100">
 Will be shown if rank is > 100
</f:if>
<f:if condition="{rank} % 2">
 Will be shown if rank % 2 != 0.
</f:if>
<f:if condition="{rank} == {k:bar()}">
 Checks if rank is equal to the result of the ViewHelper "k:bar"
</f:if>
<f:if condition="{foo.bar} == 'stringToCompare'">
 Will result in true if {foo.bar}'s represented value equals 'stringToCompare'.
</f:if>

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\IfViewHelper

Arguments

	then (mixed, optional): Value to be returned if the condition if met.

	else (mixed, optional): Value to be returned if the condition if not met.

	condition (boolean, optional): Condition expression conforming to Fluid boolean rules

Examples

Basic usage:

<f:if condition="somecondition">
 This is being shown in case the condition matches
</f:if>

Expected result:

Everything inside the <f:if> tag is being displayed if the condition evaluates to TRUE.

If / then / else:

<f:if condition="somecondition">
 <f:then>
 This is being shown in case the condition matches.
 </f:then>
 <f:else>
 This is being displayed in case the condition evaluates to FALSE.
 </f:else>
</f:if>

Expected result:

Everything inside the "then" tag is displayed if the condition evaluates to TRUE.
Otherwise, everything inside the "else"-tag is displayed.

inline notation:

{f:if(condition: someCondition, then: 'condition is met', else: 'condition is not met')}

Expected result:

The value of the "then" attribute is displayed if the condition evaluates to TRUE.
Otherwise, everything the value of the "else"-attribute is displayed.

f:layout

With this tag, you can select a layout to be used for the current template.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\LayoutViewHelper

Arguments

	name (string, optional): Name of layout to use. If none given, “Default” is used.

f:or

If content is empty use alternative text

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\OrViewHelper

Arguments

	content (mixed, optional): Content to check if empty

	alternative (mixed, optional): Alternative if content is empty

	arguments (array, optional): Arguments to be replaced in the resulting string, using sprintf

f:render

A ViewHelper to render a section, a partial, a specified section in a partial
or a delegate ParsedTemplateInterface implementation.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\RenderViewHelper

Arguments

	section (string, optional): Section to render - combine with partial to render section in partial

	partial (string, optional): Partial to render, with or without section

	delegate (string, optional): Optional PHP class name of a permanent, included-in-app ParsedTemplateInterface implementation to override partial/section

	renderable (TYPO3FluidFluidCoreRenderingRenderableInterface, optional): Instance of a RenderableInterface implementation to be rendered

	arguments (array, optional): Array of variables to be transferred. Use {_all} for all variables

	optional (boolean, optional): If TRUE, considers the section optional. Partial never is.

	default (mixed, optional): Value (usually string) to be displayed if the section or partial does not exist

	contentAs (string, optional): If used, renders the child content and adds it as a template variable with this name for use in the partial/section

Examples

Rendering partials:

<f:render partial="SomePartial" arguments="{foo: someVariable}" />

Expected result:

the content of the partial "SomePartial". The content of the variable {someVariable} will be available in the partial as {foo}

Rendering sections:

<f:section name="someSection">This is a section. {foo}</f:section>
<f:render section="someSection" arguments="{foo: someVariable}" />

Expected result:

the content of the section "someSection". The content of the variable {someVariable} will be available in the partial as {foo}

Rendering recursive sections:

<f:section name="mySection">

 <f:for each="{myMenu}" as="menuItem">

 {menuItem.text}
 <f:if condition="{menuItem.subItems}">
 <f:render section="mySection" arguments="{myMenu: menuItem.subItems}" />
 </f:if>

 </f:for>

</f:section>
<f:render section="mySection" arguments="{myMenu: menu}" />

Expected result:

 menu1

 menu1a
 menu1b

[...]
(depending on the value of {menu})

Passing all variables to a partial:

<f:render partial="somePartial" arguments="{_all}" />

Expected result:

the content of the partial "somePartial".
Using the reserved keyword "_all", all available variables will be passed along to the partial

Rendering via a delegate ParsedTemplateInterface implementation w/ custom arguments:

<f:render delegate="My\Special\ParsedTemplateImplementation" arguments="{_all}" />

Expected result:

Whichever output was generated by calling My\Special\ParsedTemplateImplementation->render()
with cloned RenderingContextInterface $renderingContext as only argument and content of arguments
assigned in VariableProvider of cloned context. Supports all other input arguments including
recursive rendering, contentAs argument, default value etc.
Note that while ParsedTemplateInterface supports returning a Layout name, this Layout will not
be respected when rendering using this method. Only the `render()` method will be called!

f:section

A ViewHelper to declare sections in templates for later use with e.g. the RenderViewHelper.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\SectionViewHelper

Arguments

	name (string): Name of the section

Examples

Rendering sections:

<f:section name="someSection">This is a section. {foo}</f:section>
<f:render section="someSection" arguments="{foo: someVariable}" />

Expected result:

the content of the section "someSection". The content of the variable {someVariable} will be available in the partial as {foo}

Rendering recursive sections:

<f:section name="mySection">

 <f:for each="{myMenu}" as="menuItem">

 {menuItem.text}
 <f:if condition="{menuItem.subItems}">
 <f:render section="mySection" arguments="{myMenu: menuItem.subItems}" />
 </f:if>

 </f:for>

</f:section>
<f:render section="mySection" arguments="{myMenu: menu}" />

Expected result:

 menu1

 menu1a
 menu1b

[...]
(depending on the value of {menu})

f:spaceless

Space Removal ViewHelper

Removes redundant spaces between HTML tags while
preserving the whitespace that may be inside HTML
tags. Trims the final result before output.

Heavily inspired by Twig’s corresponding node type.

<code title=”Usage of f:spaceless”>
<f:spaceless>
<div>

	<div>

	<div>text

	text</div>

	</div>

</div>
</code>
<output>
<div><div><div>text

text</div></div></div>
</output>

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\SpacelessViewHelper

Examples

Usage of f:spaceless:

<f:spaceless>
<div>
 <div>
 <div>text

text</div>
 </div>
</div>

Expected result:

<div><div><div>text

text</div></div></div>

f:switch

Switch view helper which can be used to render content depending on a value or expression.
Implements what a basic switch()-PHP-method does.

An optional default case can be specified which is rendered if none of the “f:case” conditions matches.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\SwitchViewHelper

Arguments

	expression (mixed): Expression to switch

Examples

Simple Switch statement:

<f:switch expression="{person.gender}">
 <f:case value="male">Mr.</f:case>
 <f:case value="female">Mrs.</f:case>
 <f:defaultCase>Mr. / Mrs.</f:defaultCase>
</f:switch>

Expected result:

"Mr.", "Mrs." or "Mr. / Mrs." (depending on the value of {person.gender})

f:then

“THEN” -> only has an effect inside of “IF”. See If-ViewHelper for documentation.

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\ThenViewHelper

f:variable

Variable assigning ViewHelper

Assigns one template variable which will exist also
after the ViewHelper is done rendering, i.e. adds
template variables.

If you require a variable assignment which does not
exist in the template after a piece of Fluid code
is rendered, consider using f:alias instead.

Usages:

{f:variable(name: ‘myvariable’, value: ‘some value’)}
<f:variable name=”myvariable”>some value</f:variable>
{oldvariable -> f:format.htmlspecialchars() -> f:variable(name: ‘newvariable’)}
<f:variable name=”myvariable”><f:format.htmlspecialchars>{oldvariable}</f:format.htmlspecialchars></f:variable>

	Implementation

	TYPO3Fluid\Fluid\ViewHelpers\VariableViewHelper

Arguments

	value (mixed, optional): Value to assign. If not in arguments then taken from tag content

	name (string): Name of variable to create

Flow TypeConverter Reference

This reference was automatically generated from code on 2020-12-02

ArrayConverter

Converter which transforms various types to arrays.

	If the source is an array, it is returned unchanged.

	If the source is a string, is is converted depending on CONFIGURATION_STRING_FORMAT,
which can be STRING_FORMAT_CSV or STRING_FORMAT_JSON. For CSV the delimiter can be
set via CONFIGURATION_STRING_DELIMITER.

	If the source is a PersistentResource object, it is converted to an array. The actual resource
content is either embedded as base64-encoded data or saved to a file, depending on
CONFIGURATION_RESOURCE_EXPORT_TYPE. For RESOURCE_EXPORT_TYPE_FILE the setting
CONFIGURATION_RESOURCE_SAVE_PATH must be set as well.

	Priority

	1

	Target type

	array

	Source types

	
	array

	string

	NeosFlowResourceManagementPersistentResource

ArrayFromObjectConverter

TypeConverter which converts generic objects to arrays by converting and returning

	Priority

	1

	Target type

	array

	Source type

	object

ArrayTypeConverter

Converts Doctrine collections to arrays

	Priority

	1

	Target type

	array

	Source type

	DoctrineCommonCollectionsCollection

BooleanConverter

Converter which transforms simple types to a boolean.

For boolean this is a no-op, integer and float are simply typecast to boolean.

Strings are converted to true unless they are empry or match one of ‘off’, ‘n’, ‘no’, ‘false’ (case-insensitive).

	Priority

	1

	Target type

	boolean

	Source types

	
	boolean

	string

	integer

	float

CollectionConverter

Converter which transforms strings and arrays into a Doctrine ArrayCollection.

The input will be transformed to the element type <T> given with the $targetType (Type<T>) using available
type converters and the result will be used to populate a Doctrine ArrayCollection.

	Priority

	1

	Target type

	DoctrineCommonCollectionsCollection

	Source types

	
	string

	array

DateTimeConverter

Converter which transforms from string, integer and array into DateTime objects.

For integers the default is to treat them as a unix timestamp. If a format to cerate from is given, this will be
used instead.

If source is a string it is expected to be formatted according to DEFAULT_DATE_FORMAT. This default date format
can be overridden in the initialize*Action() method like this:

$this->arguments['<argumentName>']
 ->getPropertyMappingConfiguration()
 ->forProperty('<propertyName>') // this line can be skipped in order to specify the format for all properties
 ->setTypeConverterOption(\Neos\Flow\Property\TypeConverter\DateTimeConverter::class, \Neos\Flow\Property\TypeConverter\DateTimeConverter::CONFIGURATION_DATE_FORMAT, '<dateFormat>');

If the source is of type array, it is possible to override the format in the source:

array(
 'date' => '<dateString>',
 'dateFormat' => '<dateFormat>'
);

By using an array as source you can also override time and timezone of the created DateTime object:

array(
 'date' => '<dateString>',
 'hour' => '<hour>', // integer
 'minute' => '<minute>', // integer
 'seconds' => '<seconds>', // integer
 'timezone' => '<timezone>', // string, see http://www.php.net/manual/timezones.php
);

As an alternative to providing the date as string, you might supply day, month and year as array items each:

array(
 'day' => '<day>', // integer
 'month' => '<month>', // integer
 'year' => '<year>', // integer
);

	Priority

	1

	Target type

	DateTimeInterface

	Source types

	
	string

	integer

	array

FloatConverter

Converter which transforms a float, integer or string to a float.

This is basically done by simply casting it, unless the input is a string and you provide some configuration
options which will make this converter use Flow’s locale parsing capabilities in order to respect deviating
decimal separators.

Using NULL or an empty string as input will result in a NULL return value.

Advanced usage in action controller context

Using default locale:

protected function initializeCreateAction() {
 $this->arguments['newBid']->getPropertyMappingConfiguration()->forProperty('price')->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\FloatConverter::class, 'locale', true
);
}

Just providing true as option value will use the current default locale. In case that default locale is “DE”
for Germany for example, where a comma is used as decimal separator, the mentioned code will return
(float)15.5 when the input was (string)”15,50”.

Using arbitrary locale:

protected function initializeCreateAction() {
 $this->arguments['newBid']->getPropertyMappingConfiguration()->forProperty('price')->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\FloatConverter::class, 'locale', 'fr'
);
}

Parsing mode

There are two parsing modes available, strict and lenient mode. Strict mode will check all constraints of the provided
format, and if any of them are not fulfilled, the conversion will not take place.
In Lenient mode the parser will try to extract the intended number from the string, even if it’s not well formed.
Default for strict mode is true.

Example setting lenient mode (abridged):

->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\FloatConverter::class, 'strictMode', false
);

Format type

Format type can be decimal, percent or currency; represented as class constant FORMAT_TYPE_DECIMAL,
FORMAT_TYPE_PERCENT or FORMAT_TYPE_CURRENCY of class NeosFlowI18nCldrReaderNumbersReader.
Default, if none given, is FORMAT_TYPE_DECIMAL.

Example setting format type `currency` (abridged):

->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\FloatConverter::class, 'formatType', \Neos\Flow\I18n\Cldr\Reader\NumbersReader::FORMAT_TYPE_CURRENCY
);

Format length

Format type can be default, full, long, medium or short; represented as class constant FORMAT_LENGTH_DEFAULT,
FORMAT_LENGTH_FULL, FORMAT_LENGTH_LONG etc., of class NeosFlowI18nCldrReaderNumbersReader.
The format length has a technical background in the CLDR repository, and specifies whether a different number
pattern should be used. In most cases leaving this DEFAULT would be the correct choice.

Example setting format length (abridged):

->setTypeConverterOption(
 \Neos\Flow\Property\TypeConverter\FloatConverter::class, 'formatLength', \Neos\Flow\I18n\Cldr\Reader\NumbersReader::FORMAT_LENGTH_FULL
);

	Priority

	1

	Target type

	float

	Source types

	
	float

	integer

	string

IntegerConverter

Converter which transforms to an integer.

	If the source is an integer, it is returned unchanged.

	If the source a numeric string, it is cast to integer

	If the source is a DateTime instance, the UNIX timestamp is returned

	Priority

	1

	Target type

	integer

	Source types

	
	integer

	string

	DateTime

LocaleTypeConverter

Converter which transforms strings to a Locale object.

	Priority

	1

	Target type

	NeosFlowI18nLocale

	Source type

	string

MediaTypeConverter

Converter which transforms strings to arrays using the configured strategy.
This TypeConverter is used by default to decode the content of a HTTP request and it currently supports json and xml
based media types as well as urlencoded content.

	Priority

	-1

	Target type

	array

	Source type

	string

ObjectConverter

This converter transforms arrays to simple objects (POPO) by setting properties.

This converter will only be used on target types that are not entities or value objects (for those the
PersistentObjectConverter is used).

The target type can be overridden in the source by setting the __type key to the desired value.

The converter will return an instance of the target type with all properties given in the source array set to
the respective values. For the mechanics used to set the values see ObjectAccess::setProperty().

	Priority

	0

	Target type

	object

	Source type

	array

PersistentObjectConverter

This converter transforms arrays or strings to persistent objects. It does the following:

	If the input is string, it is assumed to be a UUID. Then, the object is fetched from persistence.

	If the input is array, we check if it has an identity property.

	If the input has NO identity property, but additional properties, we create a new object and return it.
However, we only do this if the configuration option “CONFIGURATION_CREATION_ALLOWED” is true.

	If the input has an identity property AND the configuration option “CONFIGURATION_IDENTITY_CREATION_ALLOWED” is set,
we fetch the object from persistent or create a new object if none was found and then set the sub-properties.

	If the input has an identity property and NO additional properties, we fetch the object from persistence.

	If the input has an identity property AND additional properties, we fetch the object from persistence,
and set the sub-properties. We only do this if the configuration option “CONFIGURATION_MODIFICATION_ALLOWED” is true.

	Priority

	1

	Target type

	object

	Source types

	
	string

	array

PersistentObjectSerializer

This converter transforms persistent objects to strings by returning their (technical) identifier.

Unpersisted changes to an object are not serialized, because only the persistence identifier is taken into account
as the serialized value.

	Priority

	1

	Target type

	string

	Source type

	NeosFlowPersistenceAspectPersistenceMagicInterface

ResourceTypeConverter

A type converter for converting strings, array and uploaded files to PersistentResource objects.

Has two major working modes:

	File Uploads by PHP

In this case, the input array is expected to be a fresh file upload following the native PHP handling. The
temporary upload file is then imported through the resource manager.

To enable the handling of files that have already been uploaded earlier, the special field [‘originallySubmittedResource’]
is checked. If set, it is used to fetch a file that has already been uploaded even if no file has been actually uploaded in the current request.

	Strings / arbitrary Arrays

If the source

	is an array and contains the key ‘__identity’

the converter will find an existing resource with the given identity or continue and assign the given identity if
CONFIGURATION_IDENTITY_CREATION_ALLOWED is set.

	is a string looking like a SHA1 (40 characters [0-9a-f]) or

	is an array and contains the key ‘hash’ with a value looking like a SHA1 (40 characters [0-9a-f])

the converter will look up an existing PersistentResource with that hash and return it if found. If that fails,
the converter will try to import a file named like that hash from the configured CONFIGURATION_RESOURCE_LOAD_PATH.

If no hash is given in an array source but the key ‘data’ is set, the content of that key is assumed a binary string
and a PersistentResource representing this content is created and returned.

The imported PersistentResource will be given a ‘filename’ if set in the source array in both cases (import from file or data).

	Priority

	1

	Target type

	NeosFlowResourceManagementPersistentResource

	Source types

	
	string

	array

	PsrHttpMessageUploadedFileInterface

RoleConverter

This converter transforms strings to role instances

	Priority

	0

	Target type

	NeosFlowSecurityPolicyRole

	Source type

	string

ScalarTypeToObjectConverter

A type converter which converts a scalar type (string, boolean, float or integer) to an object by instantiating
the object and passing the string as the constructor argument.

This converter will only be used if the target class has a constructor with exactly one argument whose type must
be the given type.

	Priority

	10

	Target type

	object

	Source types

	
	string

	integer

	float

	boolean

SessionConverter

This converter transforms a session identifier into a real session object.

Given a session ID this will return an instance of NeosFlowSessionSession.

	Priority

	1

	Target type

	NeosFlowSessionSession

	Source type

	string

StringConverter

Converter which transforms simple types to a string.

	If the source is a DateTime instance, it will be formatted as string. The format
can be set via CONFIGURATION_DATE_FORMAT.

	If the source is an array, it will be converted to a CSV string or JSON, depending
on CONFIGURATION_ARRAY_FORMAT.

For array to CSV string, the delimiter can be set via CONFIGURATION_CSV_DELIMITER.

	Priority

	1

	Target type

	string

	Source types

	
	string

	integer

	float

	boolean

	array

	DateTimeInterface

TypedArrayConverter

Converter which recursively transforms typed arrays (array<T>).

This is a meta converter that will take an array and try to transform all elements in that array to
the element type <T> of the target array using an available type converter.

	Priority

	2

	Target type

	array

	Source type

	array

UriTypeConverter

A type converter for converting URI strings to Http Uri objects.

This converter simply creates a NeosFlowHttpUri instance from the source string.

	Priority

	1

	Target type

	NeosFlowHttpUri

	Source type

	string

Flow Validator Reference

This reference was automatically generated from code on 2020-12-02

AggregateBoundaryValidator

A validator which will not validate Aggregates that are lazy loaded and uninitialized.
Validation over Aggregate Boundaries can hence be forced by making the relation to
other Aggregate Roots eager loaded.

Note that this validator is not part of the public API and you should not use it manually.

Checks if the given value is valid according to the validator, and returns
the Error Messages object which occurred. Will skip validation if value is
an uninitialized lazy loading proxy.

Note

A value of NULL or an empty string (‘’) is considered valid

AlphanumericValidator

Validator for alphanumeric strings.

The given $value is valid if it is an alphanumeric string, which is defined as [[:alnum:]].

Note

A value of NULL or an empty string (‘’) is considered valid

BooleanValueValidator

Validator for a specific boolean value.

Checks if the given value is a specific boolean value.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	expectedValue (boolean, optional): The expected boolean value

CollectionValidator

A generic collection validator.

Checks for a collection and if needed validates the items in the collection.
This is done with the specified element validator or a validator based on
the given element type and validation group.

Either elementValidator or elementType must be given, otherwise validation
will be skipped.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	elementValidator (string, optional): The validator type to use for the collection elements

	elementValidatorOptions (array, optional): The validator options to use for the collection elements

	elementType (string, optional): The type of the elements in the collection

	validationGroups (string, optional): The validation groups to link to

CountValidator

Validator for countable things

The given value is valid if it is an array or Countable that contains the specified amount of elements.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	minimum (integer, optional): The minimum count to accept

	maximum (integer, optional): The maximum count to accept

DateTimeRangeValidator

Validator for checking Date and Time boundaries

Adds errors if the given DateTime does not match the set boundaries.

latestDate and earliestDate may be each <time>, <start>/<duration> or <duration>/<end>, where <duration> is an
ISO 8601 duration and <start> or <end> or <time> may be ‘now’ or a PHP supported format. (1)

In general, you are able to provide a timestamp or a timestamp with additional calculation. Calculations are done
as described in ISO 8601 (2), with an introducing “P”. P7MT2H30M for example mean a period of 7 months, 2 hours
and 30 minutes (P introduces a period at all, while a following T introduces the time-section of a period. This
is not at least in order not to confuse months and minutes, both represented as M).
A period is separated from the timestamp with a forward slash “/”. If the period follows the timestamp, that
period is added to the timestamp; if the period precedes the timestamp, it’s subtracted.
The timestamp can be one of PHP’s supported date formats (1), so also “now” is supported.

Use cases:

If you offer something that has to be manufactured and you ask for a delivery date, you might assure that this
date is at least two weeks in advance; this could be done with the expression “now/P2W”.
If you have a library of ancient goods and want to track a production date that is at least 5 years ago, you can
express it with “P5Y/now”.

Examples:

	If you want to test if a given date is at least five minutes ahead, use

	earliestDate: now/PT5M

	If you want to test if a given date was at least 10 days ago, use

	latestDate: P10D/now

	If you want to test if a given date is between two fix boundaries, just combine the latestDate and earliestDate-options:

	earliestDate: 2007-03-01T13:00:00Z
latestDate: 2007-03-30T13:00:00Z

Footnotes:

http://de.php.net/manual/en/datetime.formats.compound.php (1)
http://en.wikipedia.org/wiki/ISO_8601#Durations (2)
http://en.wikipedia.org/wiki/ISO_8601#Time_intervals (3)

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	latestDate (string, optional): The latest date to accept

	earliestDate (string, optional): The earliest date to accept

DateTimeValidator

Validator for DateTime objects.

Checks if the given value is a valid DateTime object.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	locale (string|Locale, optional): The locale to use for date parsing

	strictMode (boolean, optional): Use strict mode for date parsing

	formatLength (string, optional): The format length, see DatesReader::FORMAT_LENGTH_*

	formatType (string, optional): The format type, see DatesReader::FORMAT_TYPE_*

EmailAddressValidator

Validator for email addresses

Checks if the given value is a valid email address.

Note

A value of NULL or an empty string (‘’) is considered valid

FloatValidator

Validator for floats.

The given value is valid if it is of type float or a string matching the regular expression [0-9.e+-]

Note

A value of NULL or an empty string (‘’) is considered valid

GenericObjectValidator

A generic object validator which allows for specifying property validators.

Checks if the given value is valid according to the property validators.

Note

A value of NULL or an empty string (‘’) is considered valid

IntegerValidator

Validator for integers.

Checks if the given value is a valid integer.

Note

A value of NULL or an empty string (‘’) is considered valid

LabelValidator

A validator for labels.

Labels usually allow all kinds of letters, numbers, punctuation marks and
the space character. What you don’t want in labels though are tabs, new
line characters or HTML tags. This validator is for such uses.

The given value is valid if it matches the regular expression specified in PATTERN_VALIDCHARACTERS.

Note

A value of NULL or an empty string (‘’) is considered valid

LocaleIdentifierValidator

A validator for locale identifiers.

This validator validates a string based on the expressions of the
Flow I18n implementation.

Is valid if the given value is a valid “locale identifier”.

Note

A value of NULL or an empty string (‘’) is considered valid

NotEmptyValidator

Validator for not empty values.

Checks if the given value is not empty (NULL, empty string, empty array
or empty object that implements the Countable interface).

NumberRangeValidator

Validator for general numbers

The given value is valid if it is a number in the specified range.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	minimum (integer, optional): The minimum value to accept

	maximum (integer, optional): The maximum value to accept

NumberValidator

Validator for general numbers.

Checks if the given value is a valid number.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	locale (string|Locale, optional): The locale to use for number parsing

	strictMode (boolean, optional): Use strict mode for number parsing

	formatLength (string, optional): The format length, see NumbersReader::FORMAT_LENGTH_*

	formatType (string, optional): The format type, see NumbersReader::FORMAT_TYPE_*

RawValidator

A validator which accepts any input.

This validator is always valid.

Note

A value of NULL or an empty string (‘’) is considered valid

RegularExpressionValidator

Validator based on regular expressions.

Checks if the given value matches the specified regular expression.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	regularExpression (string): The regular expression to use for validation, used as given

StringLengthValidator

Validator for string length.

Checks if the given value is a valid string (or can be cast to a string
if an object is given) and its length is between minimum and maximum
specified in the validation options.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	minimum (integer, optional): Minimum length for a valid string

	maximum (integer, optional): Maximum length for a valid string

StringValidator

Validator for strings.

Checks if the given value is a string.

Note

A value of NULL or an empty string (‘’) is considered valid

TextValidator

Validator for “plain” text.

Checks if the given value is a valid text (contains no XML tags).

Be aware that the value of this check entirely depends on the output context.
The validated text is not expected to be secure in every circumstance, if you
want to be sure of that, use a customized regular expression or filter on output.

See http://php.net/filter_var for details.

Note

A value of NULL or an empty string (‘’) is considered valid

UniqueEntityValidator

Validator for uniqueness of entities.

Checks if the given value is a unique entity depending on it’s identity properties or
custom configured identity properties.

Note

A value of NULL or an empty string (‘’) is considered valid

Arguments

	identityProperties (array, optional): List of custom identity properties.

UuidValidator

Validator for Universally Unique Identifiers.

Checks if the given value is a syntactically valid UUID.

Note

A value of NULL or an empty string (‘’) is considered valid

Coding Guidelines

	PHP Coding Guidelines & Best Practices

	JavaScript Coding Guidelines

PHP Coding Guidelines & Best Practices

Coding Standards are an important factor for achieving a high code quality. A common
visual style, naming conventions and other technical settings allow us to produce a
homogenous code which is easy to read and maintain. However, not all important factors can
be covered by rules and coding standards. Equally important is the style in which certain
problems are solved programmatically - it’s the personality and experience of the
individual developer which shines through and ultimately makes the difference between
technically okay code or a well considered, mature solution.

These guidelines try to cover both, the technical standards as well as giving incentives
for a common development style. These guidelines must be followed by everyone who creates
code for the Flow core. Because Neos is based on Flow, it follows the same principles -
therefore, whenever we mention Flow in the following sections, we equally refer to Neos.
We hope that you feel encouraged to follow these guidelines as well when creating your own
packages and Flow based applications.

CGL on One Page

[image: The Coding Guidelines on One Page]
The Coding Guidelines on One Page

The most important parts of our Coding Guidelines in a one page document
you can print out and hang on your wall for easy reference.
Does it get any easier than that?

Code Formatting and Layout aka “beautiful code”

The visual style of programming code is very important. In the Neos project we want many
programmers to contribute, but in the same style. This will help us to:

	Easily read/understand each others code and consequently easily spot security problems
or optimization opportunities

	It is a signal about consistency and cleanliness, which is a motivating factor for
programmers striving for excellence

Some people may object to the visual guidelines since everyone has his own habits. You
will have to overcome that in the case of Flow; the visual guidelines must be followed
along with coding guidelines for security. We want all contributions to the project to be
as similar in style and as secure as possible.

General considerations

	Follow the PSR-2 standard for code formatting

	Almost every PHP file in Flow contains exactly one class and does not output anything
if it is called directly. Therefore you start your file with a <?php tag and must not end it
with the closing ?>.

	Every file must contain a header stating namespace and licensing information

	Declare your namespace.

	The copyright header itself must not start with /**, as this may confuse
documentation generators!

The Flow standard file header:

<?php
namespace YourCompany\Package\Something\New;

/*
 * This file is part of the YourCompany.Package package.
 *
 * (c) YourCompany
 *
 * This package is Open Source Software. For the full copyright and license
 * information, please view the LICENSE file which was distributed with this
 * source code.
 */

	Code lines are of arbitrary length, no strict limitations to 80 characters or something
similar (wake up, graphical displays have been available for decades now…). But feel
free to break lines for better readability if you think it makes sense!

	Lines end with a newline a.k.a chr(10) - UNIX style

	Files must be encoded in UTF-8 without byte order mark (BOM)

Make sure you use the correct license and mention the correct package in the header.

Indentation and line formatting

Since we adopted PSR-2 as coding standard we use spaces for indentation.

Here’s a code snippet which shows the correct usage of spaces.

Correct use of indentation:

/**
 * Returns the name of the currently set context.
 *
 * @return string Name of the current context
 */
public function getContextName()
{
 return $this->contextName;
}

Naming

Naming is a repeatedly undervalued factor in the art of software development. Although
everybody seems to agree on that nice names are a nice thing to have, most developers
choose cryptic abbreviations in the end (to save some typing). Beware that we Neos core
developers are very passionate about naming (some people call it fanatic, well …). In
our opinion spending 15 minutes (or more …) just to find a good name for a method is
well spent time! There are zillions of reasons for using proper names and in the end they
all lead to better readable, manageable, stable and secure code.

As a general note, english words (or abbreviations if necessary) must be used for all
class names, method names, comments, variables names, database table and field names. The
consensus is that english is much better to read for the most of us, compared to other
languages.

When using abbreviations or acronyms remember to make them camel-cased as needed, no
all-uppercase stuff. Admittedly there are a few places where we violate that rule
willingly and for historical reasons.

Vendor namespaces

The base for namespaces as well as package keys is the vendor namespace. Since Flow is
part of the Neos project, the core team decided to choose “Neos” as our vendor
namespace. The Object Manager for example is known under the class name
Neos\Flow\ObjectManagement\ObjectManager. In our examples you will find the Acme
vendor namespace.

Why do we use vendor namespaces? This has two great benefits: first of all we don’t need a
central package key registry and secondly, it allows anyone to seamlessly integrate third-party
packages, such as Symfony2 components and Zend Framework components or virtually any other PHP
library.

Think about your own vendor namespace for a few minutes. It will stay with you for a long
time.

Package names

All package names start with an uppercase character and usually are written in
UpperCamelCase. In order to avoid problems with different filesystems,
only the characters a-z, A-Z, 0-9 and the dash sign “-” are allowed for package names –
don’t use special characters.

The full package key is then built by combining the vendor namespace and the package,
like Neos.Eel or Acme.Demo.

Namespace and Class names

	Only the characters a-z, A-Z and 0-9 are allowed for namespace and class names.

	Namespaces are usually written in UpperCamelCase but variations are allowed for well
established names and abbreviations.

	Class names are always written in UpperCamelCase.

	The unqualified class name must be meant literally even without the namespace.

	The main purpose of namespaces is categorization and ordering

	Class names must be nouns, never adjectives.

	The name of abstract classes must start with the word “Abstract”, class names of aspects
must end with the word “Aspect”.

Incorrect naming of namespaces and classes

	Fully qualified class name

	Unqualified name

	Remarks

	\Neos\Flow\Session\Php

	Php

	The class is not a representation of PHP

	\Neos\Cache\Backend\File

	File

	The class doesn’t represent a file!

	\Neos\Flow\Session\Interface

	Interface

	Not allowed, “Interface” is a reserved keyword

	\Neos\Foo\Controller\Default

	Default

	Not allowed, “Default” is a reserved keyword

	\Neos\Flow\Objects\Manager

	Manager

	Just “Manager” is too fuzzy

Correct naming of namespaces and classes

	Fully qualified class name

	Unqualified name

	Remarks

	\Neos\Flow\Session\PhpSession

	PhpSession

	That’s a PHP Session

	\Neos\Flow\Cache\Backend\FileBackend

	FileBackend

	A File Backend

	\Neos\Flow\Session\SessionInterface

	SessionInterface

	Interface for a session

	\Neos\Foo\Controller\StandardController

	StandardController

	The standard controller

	\Neos\Flow\Objects\ObjectManager

	ObjectManager

	“ObjectManager” is clearer

Edge cases in naming of namespaces and classes

	Fully qualified class name

	Unqualified name

	Remarks

	\Neos\Flow\Mvc\ControllerInterface

	ControllerInterface

	Consequently the interface belongs to all the controllers in the Controller sub namespace

	\Neos\Flow\Mvc\Controller\ControllerInterface

	
	Better

	\Neos\Cache\AbstractBackend

	AbstractBackend

	Same here: In reality this class belongs to the backends

	\Neos\Cache\Backend\AbstractBackend

	
	Better

Note

When specifying class names to PHP, always reference the global namespace inside
namespaced code by using a leading backslash. When referencing a class name inside a
string (e.g. given to the get-Method of the ObjectManager, in pointcut
expressions or in YAML files), never use a leading backslash. This follows the native
PHP notion of names in strings always being seen as fully qualified.

Importing Namespaces

If you refer to other classes or interfaces you are encouraged to import the namespace with the
use statement if it improves readability.

Following rules apply:

	If importing namespaces creates conflicting class names you might alias class/interface or namespaces
with the as keyword.

	One use statement per line, one use statement for each imported namespace

	Imported namespaces should be ordered alphabetically (modern IDEs provide support for this)

Tip

use statements have no side-effects (e.g. they don’t trigger autoloading).
Nevertheless you should remove unused imports for better readability

Interface names

Only the characters a-z, A-Z and 0-9 are allowed for interface names – don’t use special
characters.

All interface names are written in UpperCamelCase. Interface names must be adjectives
or nouns and have the Interface suffix. A few examples follow:

	\Neos\Flow\ObjectManagement\ObjectInterface

	\Neos\Flow\ObjectManagement\ObjectManagerInterface

	\MyCompany\MyPackage\MyObject\MySubObjectInterface

	\MyCompany\MyPackage\MyObject\MyHtmlParserInterface

Exception names

Exception naming basically follows the rules for naming classes. There are two possible
types of exceptions: generic exceptions and specific exceptions. Generic exceptions should
be named “Exception” preceded by their namespace. Specific exceptions should reside in
their own sub-namespace end with the word Exception.

	\Neos\Flow\ObjectManagement\Exception

	\Neos\Flow\ObjectManagement\Exception\InvalidClassNameException

	\MyCompany\MyPackage\MyObject\Exception

	\MyCompany\MyPackage\MyObject\Exception\OutOfCoffeeException

On consistent naming of classes, interfaces and friends

At times, the question comes up, why we use a naming scheme that is inconsistent with
what we write in the PHP sources. Here is the best explanation we have:

At first glance this feels oddly inconsistent; We do, after all, put each
of those at the same position within php code.

But, I think leaving Abstract as a prefix, and Interface/Trait as suffixes
makes sense. Consider the opposite of how we do it: “Interface Foo”, “Trait
Foo” both feel slightly odd when I say them out loud, and “Foo Abstract”
feels very wrong. I think that is because of the odd rules of grammar in
English (Oh! English. What an ugly inconsistent language! And yet, it is my
native tongue).

Consider the phrase “the poor man”. ‘poor’ is an adjective that describes
‘man’, a noun. Poor happens to also work as a noun, but the definition
changes slightly when you use it as a noun instead of an adjective. And, if
you were to flip the phrase around, it would not make much sense, or could
have (sometimes funny) alternative meanings: “the man poor” (Would that
mean someone without a boyfriend?)

The word “Abstract” works quite well as an adjective, but has the wrong
meaning as a noun. An “Abstract” (noun) is “an abridgement or summary” or a
kind of legal document, or any other summary-like document. But we’re not
talking about a document, we’re talking about the computing definition
which is an adjective: “abstract type”. (
http://en.wiktionary.org/wiki/abstract)

“Abstract” can be a noun, an adjective, or a verb. But, we want the
adjective form. “Interface” is a noun or a verb. “Trait” is always a noun.
So, based on current English rules, “Abstract Foo”, “Foo Interface” and
“Foo Trait” feel the most natural. English is a living language where words
can move from one part of speech to another, so we could get away with
using the words in different places in the sentence. But that would, at
least to begin with, feel awkward.

So, I blame the inconsistent placement of Abstract, Interface, and Trait on
the English language.

[…]

—Jacob Floyd, http://lists.typo3.org/pipermail/flow/2014-November/005625.html

Method names

All method names are written in lowerCamelCase. In order to avoid problems with different
filesystems, only the characters a-z, A-Z and 0-9 are allowed for method names – don’t use
special characters.

Make method names descriptive, but keep them concise at the same time. Constructors must
always be called __construct(), never use the class name as a method
name.

	myMethod()

	someNiceMethodName()

	betterWriteLongMethodNamesThanNamesNobodyUnderstands()

	singYmcaLoudly()

	__construct()

Variable names

Variable names are written in lowerCamelCase and should be

	self-explanatory

	not shortened beyond recognition, but rather longer if it makes their meaning clearer

The following example shows two variables with the same meaning but different naming.
You’ll surely agree the longer versions are better (don’t you …?).

Correct naming of variables

	$singletonObjectsRegistry

	$argumentsArray

	$aLotOfHtmlCode

Incorrect naming of variables

	$sObjRgstry

	$argArr

	$cx

As a special exception you may use variable names like $i, $j and $k for
numeric indexes in for loops if it’s clear what they mean on the first sight. But even
then you should want to avoid them.

Constant names

All constant names are written in UPPERCASE. This includes TRUE, FALSE and
NULL. Words can be separated by underscores - you can also use the underscore to group
constants thematically:

	STUFF_LEVEL

	COOLNESS_FACTOR

	PATTERN_MATCH_EMAILADDRESS

	PATTERN_MATCH_VALIDHTMLTAGS

It is, by the way, a good idea to use constants for defining regular expression patterns
(as seen above) instead of defining them somewhere in your code.

Filenames

These are the rules for naming files:

	All filenames are UpperCamelCase.

	Class and interface files are named according to the class or interface they represent

	Each file must contain only one class or interface

	Names of files containing code for unit tests must be the same as the class which is
tested, appended with “Test.php”.

	Files are placed in a directory structure representing the namespace structure. You may
use PSR-0 or PSR-4 autoloading as you like. We generally use PSR-4.

File naming in Flow

	Neos.TemplateEngine/Classes/TemplateEngineInterface.php

	Contains the interface \Neos\TemplateEngine\TemplateEngineInterface which is part
of the package Neos.TemplateEngine

	Neos.Flow/Classes/Error/RuntimeException.php

	Contains the \Neos\Flow\Error\Messages\RuntimeException being a part of the package
Neos.Flow

	Acme.DataAccess/Classes/CustomQuery.php

	Contains class \Acme\DataAccess\CustomQuery which is part of the package
Acme.DataAccess

	Neos.Flow/Tests/Unit/Package/PackageManagerTest.php

	Contains the class \Neos\Flow\Tests\Unit\Package\PackageManagerTest which
is a PHPUnit testcase for Package\PackageManager.

PHP code formatting

PSR-2

We follow the PSR-2 standard which is defined by PHP FIG. You should read the full PSR-2 standard.
.. psr-2 standard: https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Some things are not specified in PSR-2, so here are some amendments.

Strings

In general, we use single quotes to enclose literal strings:

$neos = 'A great project from a great team';

If you’d like to insert values from variables, concatenate strings. A
space must be inserted before and after the dot for better readability:

$message = 'Hey ' . $name . ', you look ' . $appearance . ' today!';

You may break a string into multiple lines if you use the dot operator. You’ll have to
indent each following line to mark them as part of the value assignment:

$neos = 'A great ' .
 'project from ' .
 'a great ' .
 'team';

You should also consider using a PHP function such as sprintf() to concatenate
strings to increase readability:

$message = sprintf('Hey %s, you look %s today!', $name, $appearance);

Development Process

Test-Driven Development

In a nutshell: before coding a feature or fixing a bug, write an unit test.

Whatever you do: before committing changes to the repository, run all unit tests to make
sure nothing is broken!

Commit Messages

To have a clear and focused history of code changes is greatly helped by using a
consistent way of writing commit messages. Because of this and to help with (partly)
automated generation of change logs for each release we have defined a fixed syntax for
commit messages that is to be used.

Tip

Never commit without a commit message explaining the commit!

The syntax is as follows:

	Start with one of the following codes:

	FEATURE:

	A feature change. Most likely it will be an added feature, but it could also be removed. For additions there should
be a corresponding ticket in the issue tracker.

	BUGFIX:

	A fix for a bug. There should be a ticket corresponding to this in the issue tracker as well as a new) unit test for
the fix.

	SECURITY:

	A security related change. Those must only be committed by active contributors in agreement with the
security team.

	TASK:

	Anything not covered by the above categories, e.g. coding style cleanup or documentation changes. Usually only used
if there’s no corresponding ticket.

Except for SECURITY each of the above codes can be prefixed with WIP to mark a change work in progress. This
means that it is not yet ready for a final review. The WIP prefix must be removed before a change is merged.

	The code is followed by a short summary in the same line, no full stop at the end.
If the change affects the public API or is likely to break things on the user side, start the line with [!!!].
This indicates a breaking change that needs human action when updating. Make sure to explain why a change is breaking
and in what circumstances.

	Then follows (after a blank line) a custom message explaining what was done. It should
be written in a style that serves well for a change log read by users.

	If there is more to say about a change add a new paragraph with background information below.
In case of breaking changes give a hint on what needs to be changed by the user.

	If corresponding tickets exist, mention the ticket number(s) using footer lines after
another blank line and use the following actions:

	Fixes <Issue-Id>

	If the change fixes a bug, resolves a feature request or task.

	Related to <Issue-Id>

	If the change relates to an issue but does not resolve or fix it.

A commit messages following the rules…:

TASK: Short (50 chars or less) summary of changes

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the present tense: "Fix bug" and not "Fixed
bug." This convention matches up with commit messages generated by
commands like git merge and git revert.

Code snippets::

 should be written in
 ReStructuredText compatible
 format for better highlighting

Further paragraphs come after blank lines.

* Bullet points are okay, too
* An asterisk is used for the bullet, it can be preceded by a single
 space. This format is rendered correctly by Forge (redmine)
* Use a hanging indent

Fixes #123

Examples of good and bad subject lines:

Introduce xyz service // BAD, missing code prefix
BUGFIX: Fixed bug xyz // BAD, subject should be written in present tense
WIP !!! TASK: A breaking change // BAD, subject has to start with [!!!] for breaking changes
BUGFIX: Make SessionManager remove expired sessions // GOOD, the line explains what the change does, not what the
 bug is about (this should be explained in the following lines
 and in the related bug tracker ticket)

Source Code Documentation

All code must be documented with inline comments. The syntax is similar to that known from
the Java programming language (JavaDoc). This way code documentation can automatically be
generated.

Documentation Blocks

A file contains different documentation blocks, relating to the class in the file and the
members of the class. A documentation block is always used for the entity it precedes.

Class documentation

Classes have their own documentation block describing the classes purpose.

Standard documentation block:

/**
 * First sentence is short description. Then you can write more, just as you like
 *
 * Here may follow some detailed description about what the class is for.
 *
 * Paragraphs are separated by an empty line.
 */
class SomeClass {
 ...
}

Additional tags or annotations, such as @see or @Flow\Aspect, can be added as needed.

Documenting variables, constants, includes

Properties of a class should be documented as well. We use the short version for
documenting them.

Standard variable documentation block:

/**
 * A short description, very much recommended
 *
 * @var string
 */
protected $title = 'Untitled';

In general you should try to code in a way that the types can be derived (e.g. by using type hints and annotations).
In some cases this is not possible, for example when iterating through an array of objects. In these cases it’s ok to
add inline @var annotations to increase readability and to activate auto-completion and syntax-highlighting:

protected function someMethod(array $products) {
 /** @var $product \Acme\SomePackage\Domain\Model\Product */
 foreach ($products as $product) {
 $product->getTitle();
 }
}

Method documentation

For a method, at least all parameters and the return value must be documented.

Standard method documentation block:

/**
 * A description for this method
 *
 * Paragraphs are separated by an empty line.
 *
 * @param \Neos\Blog\Domain\Model\Post $post A post
 * @param string $someString This parameter should contain some string
 * @return void
 */
public function addStringToPost(\Neos\Blog\Domain\Model\Post $post, $someString) {
 ...
}

A special note about the @param tags: The parameter type and name are separated by one
space, not aligned. Do not put a colon after the parameter name. Always document the
return type, even if it is void - that way it is clearly visible it hasn’t just been
forgotten (only constructors never have a @return annotation!).

Testcase documentation

Testcases need to be marked as being a test and can have some more annotations.

Standard testcase documentation block:

/**
 * @test
 */
public function fooReturnsBarForQuux() {
 ...
}

Defining the Public API

Not all methods with a public visibility are necessarily part of the intended public API
of a project. For Flow, only the methods explicitly defined as part of the public API
will be kept stable and are intended for use by developers using Flow. Also the API
documentation we produce will only cover the public API.

To mark a method as part of the public API, include an @api annotation for it in the
docblock.

Defining the public API:

/**
 * This method is part of the public API.
 *
 * @return void
 * @api
 */
public function fooBar() {
 ...
}

Tip

When something in a class or an interface is annotated with @api make sure to also
annotate the class or interface itself! Otherwise it will be ignored completely when
official API documentation is rendered!

Overview of Documentation Annotations

There are not only documentation annotations that can be used. In Flow annotations are
also used in the MVC component, for defining aspects and advices for the AOP framework as
well as for giving instructions to the Persistence framework. See the individual chapters
for information on their purpose and use.

Here is a list of annotations used within the project. They are grouped by use case and
the order given here should be kept for the sake of consistency.

Interface Documentation

	@api

	@since

	@deprecated

Class Documentation

	@FlowIntroduce

	@FlowEntity

	@FlowValueObject

	@FlowScope

	@FlowAutowiring

	@FlowLazy

	@FlowAspect

	@api

	@since

	@deprecated

Property Documentation

	@FlowIntroduce

	@FlowIdentity

	@FlowTransient

	@FlowLazy

	@FlowIgnoreValidation

	@FlowInject

	@FlowInjectConfiguration

	@FlowValidate

	@var

	@api

	@since

	@deprecated

Constructor Documentation

	@param

	@throws

	@api

	@since

	@deprecated

Method Documentation

	@FlowAfter

	@FlowAfterReturning

	@FlowAfterThrowing

	@FlowAround

	@FlowBefore

	@FlowPointcut

	@FlowAutowiring

	@FlowCompileStatic

	@FlowFlushesCaches

	@FlowInternal

	@FlowSession

	@FlowSignal

	@FlowIgnoreValidation

	@FlowSkipCsrfProtection

	@FlowValidate

	@FlowValidationGroups

	@param

	@return

	@throws

	@api

	@since

	@deprecated

Testcase Documentation

	@test

	@dataProvider

	@expectedException

Tip

Additional annotations (more or less only the @todo and @see come to mind here),
should be placed after all other annotations.

Best Practices

Flow

This section gives you an overview of Flow’s coding rules and best practices.

Error Handling and Exceptions

Flow makes use of a hierarchy for its exception classes. The general rule is to throw
preferably specific exceptions and usually let them bubble up until a place where more
general exceptions are caught. Consider the following example:

Some method tried to retrieve an object from the object manager. However, instead of
providing a string containing the object name, the method passed an object (of course not
on purpose - something went wrong). The object manager now throws an InvalidObjectName
exception. In order to catch this exception you can, of course, catch it specifically - or
only consider a more general Object exception (or an even more general Flow
exception). This all works because we have the following hierarchy:

+ \Neos\Flow\Exception
+ \Neos\Flow\ObjectManagement\Exception
+ \Neos\Flow\ObjectManagement\Exception\InvalidObjectNameException

Throwing an exception

When throwing an exception, make sure to provide a clear error message and an error code
being the unix timestamp of when you write the ``throw`` statement. That error code must
be unique, so watch out when doing copy and paste!

Unit Testing

Some notes for a start:

	Never use the object manager or factory in unit tests! If they are needed, mock them.

	Avoid tests for the scope of an object. Those tests test the object factory, rather then
the test target. Such a test should be done by checking for the presence of an expected
@scope annotation – eventually we will find an elegant way for this.

Cross Platform Coding

	When concatenating paths, always use
\Neos\Utility\Files::concatenatePaths() to avoid trouble.

PHP in General

	All code should be object oriented. This means there should be no functions outside
classes if not absolutely necessary. If you need a “container” for some helper methods,
consider creating a static class.

	All code must make use of PHP5 advanced features for object oriented programming.

	Use PHP namespaces [http://www.php.net/manual/language.namespaces.php]

	Always declare the scope (public, protected, private) of methods and member variables

	Make use of iterators and exceptions, have a look at the SPL [http://www.php.net/manual/ref.spl.php]

	Make use of type-hinting [http://www.php.net/manual/language.oop5.typehinting.php] wherever possible

	Always use <?php as opening tags (never only <?)

	Never use the closing tag ?> at the end of a file, leave it out

	Never use the shut-up operator @ to suppress error messages. It makes debugging
harder, is dirty style and slow as hell

	Prefer strict comparisons whenever possible, to avoid problems with truthy and falsy
values that might behave different than what you expect. Here are some examples:

Examples of good and bad comparisons:

if ($template) // BAD
if (isset($template)) // GOOD
if ($template !== NULL) // GOOD
if ($template !== '') // GOOD

if (strlen($template) > 0) // BAD! strlen("-1") is greater than 0
if (is_string($template) && strlen($template) > 0) // BETTER

if ($foo == $bar) // BAD, avoid truthy comparisons
if ($foo != $bar) // BAD, avoid falsy comparisons
if ($foo === $bar) // GOOD
if ($foo !== $bar) // GOOD

[image: Truthy and falsy are fuzzy...]
Truthy and falsy are fuzzy…

	Order of methods in classes. To gain a better overview, it helps if methods in classes
are always ordered in a certain way. We prefer the following:

	constructor

	injection methods

	initialization methods (including initializeObject())

	public methods

	protected methods

	private methods

	shutdown methods

	destructor

	Avoid double-negation. Instead of exportSystemView(..., $noRecurse) use
exportSystemView(..., $recurse). It is more logical to pass TRUE if you want
recursion instead of having to pass FALSE. In general, parameters negating things
are a bad idea.

Comments

In general, comments are a good thing and we strive for creating a well-documented source
code. However, inline comments can often be a sign for a bad code structure or method
naming. 1 As an example, consider the example for a coding smell:

 // We only allow valid persons
if (is_object($p) && strlen($p->lastN) > 0 && $p->hidden === FALSE && $this->environment->moonPhase === MOON_LIB::CRESCENT) {
 $xmM = $thd;
}

This is a perfect case for the refactoring technique “extract method”: In order to avoid
the comment, create a new method which is as explanatory as the comment:

if ($this->isValidPerson($person)) {
 $xmM = $thd;
}

Bottom line is: You may (and are encouraged to) use inline comments if they support the
readability of your code. But always be aware of possible design flaws you probably try to
hide with them.

	1

	This is also referred to as a bad “smell” in the theory of Refactoring. We highly recommend reading “Refactoring” by Martin Fowler - if you didn’t already.

JavaScript Coding Guidelines

Here, you will find an explanation of the JavaScript Coding Guidelines we use.
Generally, we strive to follow the Flow Coding Guidelines as closely as
possible, with exceptions which make sense in the JavaScript context.

This guideline explains mostly how we want JavaScript code to be formatted;
and it does not deal with the Neos User
Interface structure. If you want to know more about the Neos User
Interface architecture, have a look into the “Neos User Interface
Development” book.

Naming Conventions

	one class per file, with the same naming convention as Flow.

	This means all classes are built like this:
<PackageKey>.<SubNamespace>.<ClassName>, and this class is
implemented in a JavaScript file located at
<Package>/.../JavaScript/<SubNamespace>/<ClassName>.js

	Right now, the base directory for JavaScript in Flow packages
Resources/Public/JavaScript, but this might still change.

	We suggest that the base directory for JavaScript files is JavaScript.

	Files have to be encoded in UTF-8 without byte order mark (BOM).

	Classes and namespaces are written in UpperCamelCase, while properties and methods
are written in lowerCamelCase.

	The xtype of a class is always the fully qualified class name. Every class which can be
instantiated needs to have an xtype declaration.

	Never create a class which has classes inside itself. Example: if the class
Neos.Foo exists, it is prohibited to create a class Neos.Foo.Bar.You can
easily check this: If a directory with the same name as the JavaScript file exists, this
is prohibited.

Here follows an example:

Neos.Foo.Bar // implemented in .../Foo/Bar.js
Neos.Foo.Bar = ...

Neos.Foo // implemented in ...Foo.js
Neos.Foo = **overriding the "Bar" class**

So, if the class Neos.Foo.Bar is included before Neos.Foo, then
the second class definition completely overrides the Bar object. In order
to prevent such issues, this constellation is forbidden.

	Every class, method and class property should have a doc comment.

	Private methods and properties should start with an underscore (_)
and have a @private annotation.

Doc Comments

Generally, doc comments follow the following form:

/**
 *
 */

See the sections below on which doc comments are available for the different
elements (classes, methods, …).

We are using http://code.google.com/p/ext-doc/ for rendering an API
documentation from the code, that’s why types inside @param, @type and
@cfg have to be written in braces like this:

@param {String} theFirstParameter A Description of the first parameter
@param {My.Class.Name} theSecondParameter A description of the second parameter

Generally, we do not use @api annotations, as private methods and attributes
are marked with @private and prefixed with an underscore. So, everything
which is not marked as private belongs to the public API!

We are not sure yet if we should use @author annotations at all. (TODO Decide!)

To make a reference to another method of a class, use the
{@link #methodOne This is an example link to method one} syntax.

If you want to do multi-line doc comments, you need to format them with
,
<pre> and other HTML tags:

/**
 * Description of the class. Make it as long as needed,
 * feel free to explain how to use it.
 * This is a sample class

 * The file encoding should be utf-8

 * UTF-8 Check: öäüß

 * {@link #methodOne This is an example link to method one}
 */

Class Definitions

Classes can be declared singleton or prototype. A class is singleton, if
only one instance of this class will exist at any given time. An class is of
type prototype, if more than one object can be created from the class at
run-time. Most classes will be of type prototype.

You will find examples for both below.

Prototype Class Definitions

Example of a prototype class definition:

Ext.ns("Neos.Neos.Content");

/* *
 * This script belongs to the Flow framework. *
 * *
 * It is free software; you can redistribute it and/or modify it under *
 * the terms of the MIT license. *
 * */

/**
 * @class Neos.Neos.Content.FrontendEditor
 *
 * The main frontend editor.
 *
 * @namespace Neos.Neos.Content
 * @extends Ext.Container
 */
Neos.Neos.Content.FrontendEditor = Ext.extend(Ext.Container, {
 // here comes the class contents
});
Ext.reg('Neos.Neos.Content.FrontendEditor', Neos.Neos.Content.FrontendEditor);

	At the very beginning of the file is the namespace declaration of the
class, followed by a newline.

	Then follows the class documentation block, which must start with
the @class declaration in the first line.

	Now comes a description of the class, possibly with examples.

	Afterwards must follow the namespace of the class and the information about
object extension

	Now comes the actual class definition, using Ext.extend.

	As the last line of the class, it follows the xType registration. We always use
the fully qualified class name as xtype

Usually, the constructor of the class receives a hash of parameters. The possible
configuration options need to be documented inside the class with the @cfg
annotation:

Neos.Neos.Content.FrontendEditor = Ext.extend(Ext.Container, {
 /**
 * An explanation of the configuration option followed
 * by a blank line.
 *
 * @cfg {Number} configTwo
 */
 configTwo: 10
 ...
}

Singleton Class Definitions

Now comes a singleton class definition. You will see that it is very similar to a
prototype class definition, we will only highlight the differences.

Example of a singleton class definition:

Ext.ns("Neos.Neos.Core");

/* *
 * This script belongs to the Flow framework. *
 * *
 * It is free software; you can redistribute it and/or modify it under *
 * the terms of the MIT license. *
 * */

/**
 * @class Neos.Neos.Core.Application
 *
 * The main entry point which controls the lifecycle of the application.
 *
 * @namespace Neos.Neos.Core
 * @extends Ext.util.Observable
 * @singleton
 */
Neos.Neos.Core.Application = Ext.apply(new Ext.util.Observable, {
 // here comes the class contents
});

	You should add a @singleton annotation to the class doc comment after the
@namespace and @extends annotation

	In singleton classes, you use Ext.apply. Note that you need to use new to
instantiate the base class.

	There is no xType registration in singletons, as they are available globally anyhow.

Class Doc Comments

Class Doc Comments should always be in the following order:

	@class <Name.Of.Class> (required)

	Then follows a description of the class, which can span multiple lines. Before and after
this description should be a blank line.

	@namespace <Name.Of.Namespace> (required)

	@extends <Name.Of.BaseClass> (required)

	@singleton (required if the class is a singleton)

If the class has a non-empty constructor, the following doc comments need to be added as
well, after a blank line:

	@constructor

	@param {<type>} <nameOfParameter> <description of parameter> for every parameter of
the constructor

Example of a class doc comment without constructor:

/**
 * @class Acme.Foo.Bar
 *
 * Some Description of the class,
 * which can possibly span multiple lines
 *
 * @namespace Acme.Foo
 * @extends Neos.Neos.Core.SomeOtherClass
 */

Example of a class doc comment with constructor:

/**
 * @class Acme.Neos.Foo.ClassWithConstructor
 *
 * This class has a constructor!
 *
 * @namespace Acme.Neos.Foo
 * @extends Neos.Neos.Core.SomeOtherClass
 *
 * @constructor
 * @param {String} id The ID which to use
 */

Method Definitions

Methods should be documented the following way, with a blank line between methods.

Example of a method comment:

...
Neos.Neos.Core.Application = Ext.apply(new Ext.util.Observable, {
 ... property definitions ...
 /**
 * This is a method declaration; and the
 * explanatory text is followed by a newline.
 *
 * @param {String} param1 Parameter name
 * @param {String} param2 (Optional) Optional parameter
 * @return {Boolean} Return value
 */
 aPublicMethod: function(param1, param2) {
 return true;
 },

 /**
 * this is a private method of this class,
 * the private annotation marks them an prevent that they
 * are listed in the api doc. As they are private, they
 * have to start with an underscore as well.
 *
 * @return {void}
 * @private
 */
 _sampleMethod: function() {
 }
}
...

Contrary to what is defined in the Flow PHP Coding Guidelines, methods which are public
automatically belong to the public API, without an @api annotation. Contrary,
methods which do not belong to the public API need to begin with an underscore and
have the @private annotation.

	All methods need to have JSDoc annotations.

	Every method needs to have a @return annotation. In case the method does not return
anything, a @return {void} is needed, otherwise the concrete return value should be
described.

Property Definitions

All properties of a class need to be properly documented as well, with an @type
annotation. If a property is private, it should start with an underscore and have the
@private annotation at the last line of its doc comment:

...
Neos.Neos.Core.Application = Ext.apply(new Ext.util.Observable, { // this is just an example class definition
 /**
 * Explanation of the property
 * which is followed by a newline
 *
 * @type {String}
 */
 propertyOne: 'Hello',

 /**
 * Now follows a private property
 * which starts with an underscore.
 *
 * @type {Number}
 * @private
 */
 _thePrivateProperty: null,
 ...
}

Code Style

	use single quotes(‘) instead of double quotes(“) for string quoting

	Multi-line strings (using \) are forbidden. Instead, multi-line strings should be
written like this:

'Some String' +
' which spans' +
' multiple lines'

	There is no limitation on line length.

	JavaScript constants (true, false, null) must be written in lowercase, and not uppercase.

	Custom JavaScript constants should be avoided.

	Use a single var statement at the top of a method to declare all variables:

function() {
 var myVariable1, myVariable2, someText;
 // now, use myVariable1,
}

Please do **not assign** values to the variables in the initialization, except empty
default values::

// DO:
function() {
 var myVariable1, myVariable2;
 ...
}
// DO:
function() {
 var myVariable1 = {}, myVariable2 = [], myVariable3;
 ...
}
// DON'T
function() {
 var variable1 = 'Hello',
 variable2 = variable1 + ' World';
 ...
}

	We use a single TAB for indentation.

	Use inline comments sparingly, they are often a hint that a new method must be
introduced.

Inline Comments must be indented one level deeper than the current nesting level:

function() {
 var foo;
 // Explain what we are doing here.
 foo = '123';
}

	Whitespace around control structures like if, else, … should be inserted like
in the Flow CGLs:

if (myExpression) {
 // if part
} else {
 // Else Part
}

	Arrays and Objects should never have a trailing comma after their last element

	Arrays and objects should be formatted in the following way:

[
 {
 foo: 'bar'
 }, {
 x: y
 }
]

	Method calls should be formatted the following way:

// for simple parameters:
new Ext.blah(options, scope, foo);
object.myMethod(foo, bar, baz);

// when the method takes a **single** parameter of type **object** as argument, and this object is specified directly in place:
new Ext.Panel({
 a: 'b',
 c: 'd'
});

// when the method takes more parameters, and one is a configuration object which is specified in place:
new Ext.blah(
 {
 foo: 'bar'
 },
 scope,
 options
);<

TODO: are there JS Code Formatters / Indenters, maybe the Spket JS Code Formatter?

Using JSLint to validate your JavaScript

JSLint is a JavaScript program that looks for problems in JavaScript programs. It is a
code quality tool. When C was a young programming language, there were several common
programming errors that were not caught by the primitive compilers, so an accessory
program called lint was developed that would scan a source file, looking for problems.
jslint is the same for JavaScript.

JavaScript code ca be validated on-line at http://www.jslint.com/. When validating the
JavaScript code, “The Good Parts” family options should be set. For that purpose, there is
a button “The Good Parts” to be clicked.

Instead of using it online, you can also use JSLint locally, which is now described. For
the sake of convenience, the small tutorial bellow demonstrates how to use JSlint with the
help of CLI wrapper to enable recursive validation among directories which streamlines the
validation process.

	Download Rhino from http://www.mozilla.org/rhino/download.html and put it for instance
into /Users/john/WebTools/Rhino

	Download JSLint.js (@see attachment “jslint.js”, line 5667-5669 contains the
configuration we would like to have, still to decide) (TODO)

	Download jslint.php (@see attachment “jslint.php” TODO), for example into
/Users/fudriot/WebTools/JSLint

	Open and edit path in jslint.php -> check variable $rhinoPath and
$jslintPath

	Add an alias to make it more convenient in the terminal:

alias jslint '/Users/fudriot/WebTools/JSLint/jslint.php'

Now, you can use JSLint locally:

// scan one file or multi-files
jslint file.js
jslint file-1.js file-2.js

// scan one directory or multi-directory
jslint directory
jslint directory-1 directory-2

// scan current directory
jslint .

It is also possible to adjust the validation rules JSLint uses. At the end of file
jslint.js, it is possible to customize the rules to be checked by JSlint by changing
options’ value. By default, the options are taken over the book “JavaScript: The Good
Parts” which is written by the same author of JSlint.

Below are the options we use for Neos:

bitwise: true, eqeqeq: true, immed: true,newcap: true, nomen: false,
onevar: true, plusplus: false, regexp: true, rhino: true, undef: false,
white: false, strict: true

In case some files needs to be evaluated with special rules, it is possible to add a
comment on the top of file which can override the default ones:

/* jslint white: true, evil: true, laxbreak: true, onevar: true, undef: true,
nomen: true, eqeqeq: true, plusplus: true, bitwise: true, regexp: true,
newcap: true, immed: true */

More information about the meaning and the reasons of the rules can be found at
http://www.jslint.com/lint.html

Event Handling

When registering an event handler, always use explicit functions instead of inline
functions to allow overriding of the event handler.

Additionally, this function needs to be prefixed with on to mark it as event handler
function. Below follows an example for good and bad code.

Good Event Handler Code:

Neos.Neos.Application.on('theEventName', this._onCustomEvent, this);

Bad Event Handler Code:

Neos.Neos.Application.on(
 'theEventName',
 function() {
 alert('Text');
 },
 this
);

All events need to be explicitly documented inside the class where they are fired onto
with an @event annotation:

Neos.Neos.Core.Application = Ext.apply(new Ext.util.Observable, {
 /**
 * @event eventOne Event declaration
 */

 /**
 * @event eventTwo Event with parameters
 * @param {String} param1 Parameter name
 * @param {Object} param2 Parameter name
 *
 * property1: description of property1
 * property2: description of property2
 *
 */
 ...
}

Additionally, make sure to document if the scope of the event handler is not set to
this, i.e. does not point to its class, as the user expects this.

ExtJS specific things

TODO

	explain initializeObject

	how to extend Ext components

	can be extended by using constructor() not initComponents() like it is for panels and so
on

How to extend data stores

This is an example for how to extend an ExtJS data store:

Neos.Neos.Content.DummyStore = Ext.extend(Ext.data.Store, {

 constructor: function(cfg) {
 cfg = cfg || {};
 var config = Ext.apply(
 {
 autoLoad: true
 },
 cfg
);

 Neos.Neos.Content.DummyStore.superclass.constructor.call(
 this,
 config
);
 }
});
Ext.reg('Neos.Neos.Content.DummyStore', Neos.Neos.Content.DummyStore);

Unit Testing

	It’s highly recommended to write unit tests for javascript classes. Unit tests should be
located in the following location: Package/Tests/JavaScript/...

	The structure below this folder should reflect the structure below
Package/Resources/Public/JavaScript/... if possible.

	The namespace for the Unit test classes is Package.Tests.

	TODO: Add some more information about Unit Testing for JS

	TODO: Add note about the testrunner when it’s added to the package

	TODO: http://developer.yahoo.com/yui/3/test/

Release Notes

	Flow 5.0

	Upgrade Instructions
	Upgrading your Packages
	Upgrading existing code
	Inside core:migrate

	What has changed
	!!!TASK: Change default charset and collation to utf8mb4

	!!! TASK: Remove deprecated cache parts in Flow

	!!!TASK: Safe trusted proxies default value

	TASK: Update to Doctrine DBAL 2.7 and ORM 2.6

	FEATURE: AOP for final methods

	FEATURE: Add Forwarded Header support

	!!! TASK: Remove deprecated ``ValidationResultsViewHelper``

	!!! TASK: Remove deprecated MediaType handling methods in Request

	!!! TASK: Remove deprecated unversioned ``XliffParser``

	TASK: Remove deprecated ``RawViewHelper``

	!!! TASK: Remove ``getTemplateVariableContainer`` method

	!!!TASK: Only scan Private/Translations for available locales

	FEATURE: Add PSR-6 and PSR-16 support to cache framework

	!!! FEATURE: PSR-3 Logging

	!!! TASK: Cleanup in package management

	FEATURE: Allow specifying a list of available Locales via settings

	TASK: Update standalone Fluid to recent version

	Flow 4.3

	Upgrade Instructions
	What has changed

	!!! FEATURE: More extensible Routing
	Routing Parameters

	Extended URI matching

	!!! FEATURE: Allow bypassing Flow class loader for performance

	TASK: Split Flow Log to separate package

	FEATURE: Add cookie support on curl request

	FEATURE: PHP 7.2 compatibility

	Flow 4.2
	Allow for dynamic label overrides

	Add PSR-7 compatibility to HTTP stack

	Add Date.formatCldr helper

	Introduce ObjectAccess::instantiate

	Add Eel String helper pregMatchAll

	Allow Nullable action params to be annotated

	Add range method to Eel Array-helper

	Allow setting the package type when kickstarting a package

	ViewHelper compilation for increased speed

	Flow 4.1

	Upgrade Instructions
	What has changed
	Allow more flexible Doctrine Entity Manager configuration

	Check for webserver group membership in file permission script

	New wordCount Eel string helper

	Kickstarter command to create XLIFF translation files

	Unknown properties for ObjectConverter are now skipped

	Build environment overhaul

	Upgrading your Packages
	Upgrading existing code

	Flow 4.0

	Upgrade Instructions
	What has changed
	Namespace change

	Fluid standalone

	Make Cache FileBackends independent of external locks

	Reuse join aliases on same property paths in QueryBuilder

	Runtime evaluation of env and constants in Configuration

	Scalar to object converter

	Parse media types from file content

	Extend AuthenticationManagerInterface with getter for providers

	Array.flip() Eel helper

	Support allowable tags in stripTags Eel String helper

	Add String.pregSplit Eel helper

	Internal TypeConverters

	Allow property mapping of DateTimeImmutables

	Support for protected static compiled methods

	Dependency Injection and AOP for final classes

	ViewConfiguration use only the settings of highest weighted request filter

	Rename [TYPO3][Flow][Security][Authentication]

	Remove deprecated ResourcePublisher and pointer

	Remove deprecated support for relative uri paths

	Remove deprecated support of temporary path setting

	Remove deprecated EarlyLogger

	Remove deprecated PropertyMappingConfigurationBuilder

	Remove deprecated getClassTag and constants

	Remove relations to party in Account and Security\\Context

	Remove deprecated properties and methods in Argument

	Remove deprecated class ResourcePublisher

	Rename object and resource

	Remove internal properties request and response from RequestHandler

	Remove “fallback” password hashing strategy

	Remove deprecated setting injection

	Remove deprecated TypeHandling::hex2bin method

	Remove deprecated StringHelper::match method

	Remove deprecated Http\\Message class

	Remove deprecated TranslationHelper::translateById

	Remove deprecated redirectToReferringRequest

	Remove deprecated Route::getMatchingUri

	Remove output related methods from AbstractMigration

	Remove deprecated methods from TemplateView

	Upgrading your Packages
	Upgrading existing code
	Inside core:migrate

	Upgrading the database schema

	Famous last words

Flow 5.0

This major release of Flow brings a few bigger features and a lot of
modernisation of the existing code base.

Upgrade Instructions

This section contains instructions for upgrading your Flow 4.3
based applications to Flow 5.0.

	We now require PHP 7.1.x or higher

	If you are using a MySQL based database you must use at least
MySQL 5.7.7 or MariaDB 10.2.2

In general just make sure to run the following commands:

./flow flow:cache:flush --force
./flow flow:core:migrate
./flow database:setcharset
./flow doctrine:migrate
./flow resource:publish

If you are upgrading from a lower version than 4.2, be sure to read the
upgrade instructions from the previous Release Notes first.

Upgrading your Packages

Upgrading existing code

There have been major API changes in Flow 4.0 which require your code to be adjusted. As with earlier changes to Flow
that required code changes on the user side we provide a code migration tool.

Given you have a Flow system with your (outdated) package in place you should run the following before attempting to fix
anything by hand:

./flow core:migrate --package-key Acme.Demo

The package key is optional, if left out it will work on all packages it finds (except for library packages and packages
prefixed with “TYPO3.*” or “Neos.*”) - for the first run you might want to limit things a little to keep the overview,
though.

Make sure to run:

./flow help core:migrate

to see all the other helpful options this command provides.

Also make sure to read the changes below.

Inside core:migrate

The tool roughly works like this:

	Collect all code migrations from packages

	Collect all files from all packages (except Framework and
Libraries) or the package given with --package-key

	For each migration and package

	Check for clean git working copy (otherwise skip it)

	Check if migration is needed (looks for Migration footers in commit
messages)

	Apply migration and commit the changes

Afterwards you probably get a list of warnings and notes from the
migrations, check those to see if anything needs to be done manually.

Check the created commits and feel free to amend as needed, should
things be missing or wrong. The only thing you must keep in place from
the generated commits is the migration data in composer.json. It is
used to detect if a migration has been applied already, so if you drop
it, things might get out of hands in the future.

What has changed

Flow 5.0 comes with some breaking changes and removes several deprecated
functionalities, be sure to read the following changes and adjust
your code respectively. For a full list of changes please refer
to the changelog.

In general type hints were added to a lot of Flow core methods,
if you get type errors check how you use those methods and report
a bug in case the type hint seems wrong or the call happens in the
core and seems unrelated to your code.

Also the YAML parser component we use is stricter now, so any
parsing errors you get are actually broken YAML that was just ignored
beforehand with unclear outcome.

Additionally render method arguments in ViewHelpers are deprecated and should be
replaced with registerArgument calls as was done with all integrated VieHelpers for this release.

!!!TASK: Change default charset and collation to utf8mb4 [https://github.com/neos/flow-development-collection/pull/1267]

This changes the charset and collation to create table statements in the
existing migrations. This make sure the tables are set up correctly
independent of the database default configuration.

This is breaking if you have existing tables that do not use ut8mb4 as
charset and utf8mb4_unicode_ci as collation. To solve this you need to
convert the existing tables. This can be done using the command:

./flow database:setcharset

!!! TASK: Remove deprecated cache parts in Flow [https://github.com/neos/flow-development-collection/pull/1251]

After splitting caches some deprecated classes were left over for
backwards compatibility with existing configurations and backends.
All of those are now removed just leaving some wrapper code to make
cache creation in Flow easier.

This is breaking if your cache configuration still used one of the
deprecated Neos\\Flow\\Cache\\Backend\\... backend classes instead
of the Neos\\Cache\\Backend\\... classes. Just adjust your
configuration in this case. If you have a custom cache backend it
also should implement the interface (and abstract class) from
Neos.Cache instead the now removed ones from Neos.Flow.
This should also be a rather easy code adjustment.

!!!TASK: Safe trusted proxies default value [https://github.com/neos/flow-development-collection/pull/1273]

By default, all proxies were trusted beforehand, but this is an usafe setting in most setups.
This change switches the trustedProxies.proxies setting to %env:FLOW_HTTP_TRUSTED_PROXIES, which means no proxies are trusted by default unless something is specified via the environment variable and hence the client IP address, port and host values for the request can not be overridden by any of the Forwarded-* headers.

This is breaking if you use a CDN or reverse proxy on your server and relied on the previous unsafe
default setting. In that case you should instead provide a list of the IP ranges of your proxy/CDN
servers, either directly or through the FLOW_HTTP_TRUSTED_PROXIES environment variable or explicitly switch back to trust all proxy servers by setting the value to ‘*’.

TASK: Update to Doctrine DBAL 2.7 and ORM 2.6 [https://github.com/neos/flow-development-collection/pull/1272]

When injecting Doctrine\Common\Persistence\ObjectManager be aware that this is
now deprecated, use Doctrine\ORM\EntityManagerInterface instead.

FEATURE: AOP for final methods [https://github.com/neos/flow-development-collection/pull/661]

This adds support proxied final methods.
Previously those were always skipped from proxy building disallowing to advice them via AOP aspects.

FEATURE: Add Forwarded Header support [https://github.com/neos/flow-development-collection/pull/1269]

This adds support for setting the standardized Forwarded Header as described in RFC 7239 Section 4 (https://tools.ietf.org/html/rfc7239#section-4), as the headers trusted proxy setting.
Also, this change allows to set a single header value for the headers, so that working with the single Forwarded header is more convenient:

!!! TASK: Remove deprecated ``ValidationResultsViewHelper`` [https://github.com/neos/flow-development-collection/pull/1255]

This removes the old ValidationResultsViewHelper that was moved
to be Validation\\\ResultsViewHelper.

So if you were still using <f:form.validationresults> you would
now use <f:validation.results>.

!!! TASK: Remove deprecated MediaType handling methods in Request [https://github.com/neos/flow-development-collection/pull/1253]

Those methods are available int he MediaTypes utility class.

!!! TASK: Remove deprecated unversioned ``XliffParser`` [https://github.com/neos/flow-development-collection/pull/1259]

The Neos\\Flow\\I18n\\Xliff\\XliffParser is fully replaced by the
Neos\\Flow\\I18n\\Xliff\\V12\\XliffParser so if you were still using
the old unversioned class, you can simply switch to the new one.

TASK: Remove deprecated ``RawViewHelper`` [https://github.com/neos/flow-development-collection/pull/1257]

This viewhelper is available in the standalone Fluid package
we are using since last major and and it is not a problem if
you are just using the viewhelper as it is automatically available
just as this one. But if you extended this viewhelper for some
you need to adapt to the original viewhelper.

!!! TASK: Remove ``getTemplateVariableContainer`` method [https://github.com/neos/flow-development-collection/pull/1261]

This method was deprecated with the switch to standalone Fluid in
Flow 4.0 to get closer to the RenderingContext in the base
package. It is therefore now removed.

Any calls to getTemplateVariableContainer can be replaced with calls to
getVariableProvider.

!!!TASK: Only scan Private/Translations for available locales [https://github.com/neos/flow-development-collection/pull/1234]

Before the full Resources/Private folder was scanned for available locales, which also included
for example the CLDR, which ended up filling the available locales with much more locales than
are actually considered “available” in a normal Flow application.
This will therefore allow applications to define available locales easily from the Translations
provided.

This is breaking, because it will end up with less available locales by default, since only the
locales of Flow Translations are considered available, instead of all of CLDR locales.

FEATURE: Add PSR-6 and PSR-16 support to cache framework [https://github.com/neos/flow-development-collection/pull/1168]

This implements a PSR-6 compatible cache pool http://www.php-fig.org/psr/psr-6 and
a factory for those caches.

Additionally a separate PSR-16 compatible SimpleCache is implemented
with it’s own factory as the interfaces are incompatible with our interfaces.

Important: Both new cache variants are not integrated into Flows cache management at all,
you need to take care of getting and flushing those caches, they are not flushed on
./flow flow:cache:flush.

!!! FEATURE: PSR-3 Logging [https://github.com/neos/flow-development-collection/pull/1171]

This change accomplishes two things. On the one hand it
provides PSR-3 compatibility for the logger package.
On the other hand it lays the ground work to allow any
PSR-3 compatible logger to be used in Flow and applications.

This is breaking in case you implemented the Neos\\Flow\\Log\\LoggerInterface
yourself, you should switch to the PSR-3 logger interface (should be easy).

!!! TASK: Cleanup in package management [https://github.com/neos/flow-development-collection/pull/1280]

This is the next step towards a leaner package management,
the essential part is that packages are now separated into
third party packages and Flow (enabled) packages.
All packages are available for object management but Resources
and Configuration as well as booting are only expected and
managed in Flow (enabled) packages.

The Package class is still a fully Flow enabled package and
no adaption should be necessary to packages.
GenericPackage is the low level class for describing any
other package in the system.
According to that change a couple of interfaces where added:

	BootableInterface describes a bootable package

	FlowPackageInterface extension of the PackageInterface
Flow specifics are now moved over to the FlowPackageInterface

	PackageKeyAwareInterface defines that the package has a
package key. Currently that is implemented by all packages but
we might change that at a later point in time.

The notion of protected and objectManagementEnabled is gone from
package classes and the interfaces as both are no longer needed.

The PackageManager and interface no longer support deleting of
packages, this should happen through composer now.
In order the package:delete command is removed as well.

PackageManager::getPackageVersion was moved over to
ComposerUtility::getPackageVersion where it should have been in the
first place. It was not part of the interface nor marked api.

This change is breaking if you use the PackageManager to get
all packages and expect them to be Flow packages. You must now
check for instanceof FlowPackageInterface if you expect Flow
specific functionality from a package object.

This is also a preparation to drop the PackageManagerInterface as
overriding the implementation is neither possible nor sensible.
You can directly use the PackageManager object from now.

FEATURE: Allow specifying a list of available Locales via settings [https://github.com/neos/flow-development-collection/pull/1282]

With this, it is possible to specify a list of available Locales via the
Neos.Flow.i18n.availableLocales setting, which will then avoid triggering
the scanning process.

TASK: Update standalone Fluid to recent version [https://github.com/neos/flow-development-collection/pull/1291]

This means Fluid templates might behave differently now but also additional features became available.

Flow 4.3

Upgrade Instructions

This section contains instructions for upgrading your Flow 4.2 based applications to Flow 4.3.

In general just make sure to run the command:

./flow flow:cache:flush --force

If you are upgrading from a lower version than 4.2, be sure to read the upgrade instructions from
the previous Release Notes first.

What has changed

Flow 4.3 comes with a major change in the routing and numerous fixes. Here’s a list of changes that
might need special attention when upgrading.

!!! FEATURE: More extensible Routing [https://github.com/neos/flow-development-collection/pull/1126]

The Flow-routing is improved and now allows the definition of RoutingParameters
via HTTP-components that can later on be handled by custom RoutePartHandlers.
That way the routing can react to influences other than the uri-path like the
requested host-name or scheme or any other computable value.

Attention: The signature of the internal Router implementation has changed.
In the unlikely case that you replaced the flow-router with a custom-router
you have to adjust your code accordingly.

Routing Parameters

Routing Parameters can be defined globally (via HTTP component) in order
to allow custom RoutePart handler to react to influences that are outside of
the incoming URI path (example: The requested host name or scheme)

For a RoutePart handler to access the parameters they have to implement
the new ParameterAwareRoutePartInterface.
The DynamicRoutePart already implements the interface. For custom implementations
extending DynamicRoutePart the parameters will be accessible via $this->parameters.

Extended URI matching

RoutePart handlers can now return an instance of MatchResult when mapping
incoming requests.
This allows the handler to specify Tags to be associated with the route.

	Packages: Flow

!!! FEATURE: Allow bypassing Flow class loader for performance [https://github.com/neos/flow-development-collection/pull/925]

Currently the composer class loader is only used as a fallback to our own,
but especially if the optimized loader is used the composer one is much
faster.

On systems in which all packages/classes are registered correctly via
autoload statements in composer.json files using our own class loader
only for proxy classes can bring an substantial boost in performance for
every request.

In order to enable this feature you need to set an environment variable
FLOW_ONLY_COMPOSER_LOADER=1. Please test carefully if that breaks due
to your autoload configuration not being fully composer ready.

Additionally it is recommended to use the optimized composer loader by
calling composer dumpautoload -o.

While not breaking in itself this change deprecates using our class loader
for anything else than proxy classes. In practice this means you should
always enable composer auto loader only by using above mentioned environment
variable. At least make sure that your projects work with this
enabled.

We will drop the variable and make this the default behavior in the next
major version of Flow (version 5.0) which means only classes that are
correctly added to composer (loaded) packages with autoload configuration
are being loaded correctly.

	Packages: Flow

TASK: Split Flow Log to separate package [https://github.com/neos/flow-development-collection/pull/216]

The log-package was extracted from Flow to become a separate independent
composer-package neos/flow-log that can be used outside of Neos or Flow
projects. This continues our long-time-effort of extracting parts of our
odebase that can be used separately and making them available to the
whole php-community.

The SystemLoggerInterface and SecurityLoggerInterface are kept
in Flow as they have not much meaning in the Logger package. Additionally
the EarlyLogger was not moved as it depends on those interfaces.

	Packages: Flow Log

FEATURE: Add cookie support on curl request [https://github.com/neos/flow-development-collection/pull/1099]

Neos\Flow\Http\Client\CurlEngine will now attach cookies to an outgoing request.

	Packages: Flow

FEATURE: PHP 7.2 compatibility

Flow framework now supports PHP 7.2 and all tests are executed for PHP versions 7.0, 7.1 and 7.2.

Flow 4.2

Allow for dynamic label overrides

This replaces the previous physical file model with the file model defined by the XLIFF standard.
Files IDs are no longer defined by their location in the file system but by their _product-name_ and _orginal_ XLIFF attributes. The location serves as a fallback to prevent this from being a breaking change.
The XLIFF file provider therefore parses all registered packages and in addition the Data/Translations folder in search of file entries in .xlf files.

The translation file monitor is now also registered for said Data/Translations folder to enable automatic cache clearing.
In preparation for support of XLIFF version 2, the XLIFF parser has been created in a v12 namespace and the class for holding the file data is modeled as an adapter that should be able to handle both formats.
Overriding labels is now be as easy as putting a valid XLIFF file with defined _product-name_ (Package) and _orginal_ (Source) in any translation folder.

Add PSR-7 compatibility to HTTP stack

This adds all missing methods and implementations to make our HTTP implementation PSR-7 compatible.
Further adjustments to Flow are not included yet.

Add Date.formatCldr helper

This change adds CLDR formatting capability to the Date Eel helper, to match
the functionality of the format.date Fluid ViewHelper.

Introduce ObjectAccess::instantiate

This static method allows instantiating a given class with
and array of arguments in an efficient way.

Most of this method was previously hidden in the ObjectManager
of Flow but as the same code is replicated in other packages it
makes sense to open it as generic method for re-use.

Add Eel String helper pregMatchAll

This pull request add the Eel String helper String.pregMatchAll

Allow Nullable action params to be annotated

This change allows action arguments to be annotated “|null” or “null|” when they are optional with default value null. Before the type conversion would fail because no matching type converter would be found.

Add range method to Eel Array-helper

The range method is a wrapper around the php range function that creates a sequence of integers or characters as array. This is especially helpful to create paginations in pure fusion.

Allow setting the package type when kickstarting a package

You can now do ./flow kickstart:package Foo.Bar –packageType neos-plugin, like in the PackageCommandController.
A question regarding the docs: Is the “Command Reference” part of the documentation autogenerated? If so, it seems to be outdated, because there are still some mentions of typo3 in there.

ViewHelper compilation for increased speed

Adds compilation and static rendering to a couple of ViewHelpers
that were either easy to change or used quite a lot.
The modified ViewHelpers should all render faster in all scenarios.

Flow 4.1

Upgrade Instructions

This section contains instructions for upgrading your Flow 4.0 based applications to Flow 4.1.

Since the 4.1 Release mainly consists of bugfixes and non-intrusive features, the update process
should be straightforward.

In general just make sure to run the command:

./flow flow:cache:flush --force

If you are upgrading from a lower version than 4.0, be sure to read the upgrade instructions from
the 4.0 Release Notes first.

What has changed

Allow more flexible Doctrine Entity Manager configuration

Currently we need to add new configuration settings for every feature of Doctrine that is configurable through the entity manager.
Now there is a signal that is triggered before the Doctrine Entity Manager is configured to allow changing configuration settings of Doctrine programmatically.

Check for webserver group membership in file permission script

The file permission script now checks if the command line user is a member of the webserver group.

New wordCount Eel string helper

The ${String.wordCount()} eel helper can be used to determine the number of words in a string.

Kickstarter command to create XLIFF translation files

It is now possible to create initial XLIFF translation by running a kickstart command. E.g. call ./flow kickstart:translation --package-key Neos.Demo --language-key de and check the created folders and files at Packages/Sites/Neos.Demo/Resources/Private/Translations.

Unknown properties for ObjectConverter are now skipped

This enables the ObjectConverter (for simple PHP objects) to acknowledge the skipUnknownProperties flag of the property mapping configuration and thus ignore properties from the source which don’t exist in the target.
If a source array contains properties “foo” and “bar” and the target class constructor only contains “foo”, the array can now be mapped if skipUnknownProperties is set in the respective property mapping configuration.

Build environment overhaul

For 4.1 our internal build tools have been tweaked when it comes to branching and dependency management. This way it will be less painful for us to provide you with new releases of Flow.

Upgrading your Packages

Upgrading existing code

In case you have been implementing your own PackageManager, there is a breaking change in this release that introduces the
method rescanPackages() to the PackageManagerInterface. So in case you really implemented your own Package
Management, you should add an implementation for this method. Be aware though that implementing a custom PackageManager was never
intended and the support for this will likely be removed in an upcoming version.

Flow 4.0

Upgrade Instructions

This section contains instructions for upgrading your Flow 3.3 based applications to Flow 4.0.

What has changed

Flow 4.0 comes with major changes, numerous fixes and improvements. Here’s a list of changes that might need special
attention when upgrading.

In general make sure to run the commands:

./flow flow:cache:flush --force
./flow core:migrate
./flow database:setcharset
./flow doctrine:migrate
./flow resource:publish

when upgrading (see below).

Namespace change

All namespaces beginning with TYPO3\\ have been changed to the Neos\\ vendor namespace.
Migrations are provided for automatically adjusting user packages.

Fluid standalone

Replaces TYPO3.Fluid with Neos.FluidAdaptor integrating standalone fluid.

This change brings the following:

	Standalone Fluid integration (see https://github.com/typo3/fluid)

	Flow no longer depends on Fluid, the default View is configurable

	Partials can be called with a package prefix “Vendor.Package:Path/Partial”

Standalone Fluid in general is faster and many of the Flow specific ViewHelpers were
rewritten to take advantage of compiling as well to make it even faster.

The change is breaking because:

	Standalone Fluid is a major rewrite, it might react differently for edge cases

	Notably escaping now also escapes single quotes.

	The ViewInterface got a new static createWithOptions(array $options) construct method, which needs to be implemented by custom view classes to have a defined way to instantiate views.

	Flow no longer depends on Fluid, which means you might need to require it yourself in your distribution or package(s)

	TYPO3\\Fluid* classes have moved to Neos\\FluidAdaptor* and a lot of classes are gone and instead to be used from the standalone fluid package if needed.

	Boilerplate code to create Fluid views is slightly different and might need to be adapted in projects.

Make Cache FileBackends independent of external locks

This avoids using external locks, which are prone to platform issues
(race conditions and tombstones for lock files or missing semaphore extension)
and instead directly uses the file locking mechanism of PHP to lock the cache files.

This should noticeably improve performance for the FileBackend caches and avoid
having thousands of Lock files which clobber the file system and created issues
with big setups previously.

Reuse join aliases on same property paths in QueryBuilder

Previously a query object like

$query->logicalAnd($query->equals('related.property', 'foo'), $query->equals('related.otherProperty', 'bar'));

would generate an SQL statement with two joins to the related entity, one for each condition, translating to

“get all objects that have any related entity with a `property` ‘foo’ and any related entity with `otherProperty` ‘bar’”.

With this change, it will only generate a single join and reuse the join for multiple conditionals, therefore translating the above query object to the more common

“get all objects that have a related entity with both a `property` ‘foo’ and `otherProperty` ‘bar’”

This also improves performance of such queries by avoiding unnecessary joins.

Runtime evaluation of env and constants in Configuration

The configuration is now cached with php expressions that read
environment variables and constants at runtime to allow writing
the configuration cache on a different environment.

Scalar to object converter

This introduces a simple type converter which can convert
a scalar value (string, integer, float or boolean) into an
object by passing that value to the class constructor.

This converter helps developers using Value Objects (not
managed by the persistence framework) or other Data
Transfer Objects in places where type conversion is
supported. One common case is to use Value Object class
names as a type hint for arguments in a command line
controller method.

Parse media types from file content

MediaTypes::getMediaTypeFromFileContent() can be used to return the media type from a given file content.

Extend AuthenticationManagerInterface with getter for providers

Adds a new getter method to the AuthenticationManagerInterface, that has to return all provided authentication providers.

Array.flip() Eel helper

With this helper it is possible to flip the keys and values from an array.

Support allowable tags in stripTags Eel String helper

Now the stripTags string eel helper will accept a second optional argument in form of a list of allowed tags which will not be stripped from the string.

Add String.pregSplit Eel helper

Adds a new helper method to the string helper for splitting strings with a PREG pattern.

Example:

String.pregSplit("foo bar baz", "/\\s+/") == ['foo', 'bar', 'baz']

Internal TypeConverters

Creating a new TypeConverter can have major side-effects on existing applications.
This change allows TypeConverters to have a negative priority in order to mark them “internal”.
Internal TypeConverters will be skipped from PropertyMapping by default.

To use them explicitly the PropertyMappingConfiguration can be used:

$configuration = new PropertyMappingConfiguration();
$configuration->setTypeConverter(new SomeInternalTypeConverter());
$this->propertyMapper->convert($source, $targetType, $configuration);

Allow property mapping of DateTimeImmutables

This extends DateTimeConverter and StringConverter so that they support
any class implementing the \\DateTimeInterface (including \\DateTimeImmutable).

Support for protected static compiled methods

With this change static methods annotated @Flow\\CompileStatic can now
be protected allowing for more concise public APIs.

If the annotated method is private or not static an exception is
thrown during compile time in Production context.

As a side-effect this change adds a new API method ReflectionService:: getMethodsAnnotatedWith()
that allows for retrieval of all method names of a class that are annotated with a
given annotation.

Dependency Injection and AOP for final classes

This adds support for proxied final classes.

Previously those were always skipped from proxy building disallowing Dependency Injection.
Besides final classes could not be targeted by AOP advices.

With this change, final classes are now also proxied by default.
To _disable_ AOP/DI for those the already existing Proxy annotation can be used:

use TYPO3\\Flow\\Annotations as Flow;

/**
 * @Flow\\Proxy(false)
 */
final class SomeClass
{
 // ...

Background:

Marking classes final is an important tool for framework code as it allows to define extension points
more explicitly, but until now we had to avoid the final keyword in order to support DI and AOP.

ViewConfiguration use only the settings of highest weighted request filter

Before this the higher weighted requestFilters were merged into the lower-weighted ones which placed the array-properties of the higher weighted filters last in the merged configuration. This made it impossible to add a new path templatePath that would be considered before.

This patch removes the merging of view-configurations entirely since this lead to confusion in the integration because the merging was unexpected.

This is breaking if you have multiple configurations with filters that apply to the same request and expect some option from one of the configurations to still be present despite another configuration having a higher weight.

Rename [TYPO3][Flow][Security][Authentication]

This change adjusts the path used for the POST argument
used for authentication with username and password to the
new vendor namespace.

Any application - and especially its Fluid templates and
JavaScript - relying on the old path needs to be updated.

This change provides a core migration which carries out
these changes.

Remove deprecated ResourcePublisher and pointer

The old resource management pre Flow 3.0 used the ResourcePublisher
as main service to get public URLs to resources and the ResourcePointer
to keep track of unique resources. Both became unnecessary and were
deprecated with Flow 3.0 and are therefore removed with this major release.

Remove deprecated support for relative uri paths

Removed the long-deprecated compat flag for relative uri paths and the according code in the UriBuilder and UriBuilder test.

Remove deprecated support of temporary path setting

The setting TYPO3.Flow.utility.environment.temporaryDirectoryBase
was deprecated and with this change finally removed.

The temporary path defaults to FLOW_PATH_ROOT . 'Data/Temporary', but
you can always override the temporary path via the environment variable
FLOW_PATH_TEMPORARY_BASE instead.

Note that in either case a sub path will be created based on the
current application context.

Remove deprecated EarlyLogger

Remove deprecated PropertyMappingConfigurationBuilder

The PropertyMappingConfigurationBuilder class was deprecated and
is bound to be removed.

It can be fully replaced by calling
PropertyMapper::buildPropertyMappingConfiguration from now on.

Remove deprecated getClassTag and constants

The CacheManager::getClassTag method was unused since
quite some time and became deprecated in previous releases.
It is therefore bound for removal in this major version.
Additionally the unused tagging constants in the FrontendInterface
are removed as they are also no longer needed.

Remove relations to party in Account and Security\\Context

Since 3.0 something like a Party is not attached to the account directly anymore.
Fetch your user/party/organization etc. instance on your own using Domain Services or Repositories.

One example is TYPO3\\Party\\Domain\\Service\\PartyService.

Remove deprecated properties and methods in Argument

Remove deprecated class ResourcePublisher

Rename object and resource

This renames the class Resource to ResourceObject and renames the namespaces
TYPO3\\Flow\\Object and TYPO3\\Flow\\Resource to TYPO3\\Flow\\ObjectManagement
and TYPO3\\Flow\\ResourceManagement respectively.

A Doctrine migration and two core migrations to help with adjusting code are added.

Remove internal properties request and response from RequestHandler

Since the Request and Response instances are supposed to change inside the ComponentChain,
it is error-prone to keep a reference to the initial instances inside the RequestHandler.
This change removes the class properties $request and $response and instead uses local variables.

This is marked breaking only for the reason that some RequestHandler implementations could
exist that still somehow depend on this internal detail. It is not really breaking as those properties
were never part of the public api though.

Remove “fallback” password hashing strategy

This removes the fallback for password hashing strategies.

This is a breaking change for installations that had accounts created with a Flow version lower
than 1.1 (and whose passwords were never updated since then).
In that case make sure to add the prefix to the corresponding accounts in the accounts table.
For the default configuration the corresponding SQL query would be:

UPDATE typo3_flow_security_account SET credentialssource = CONCAT(‘bcrypt=>’, credentialssource)

Background:

Due to some problems caused by older Flow installations that migrated from 1.0, a fallback
mechanism for the password hashing strategies was implemented for password hashes that don’t
contain the strategy prefix (i.e. “bcrypt=>”).

As a result the default strategy for HashService::hashPassword() is a different one than for
HashService::validatePassword() unless specified explicitly because for the latter the configured
fallback strategy would be used rather than the default.

Remove deprecated setting injection

This removes the deprecated injection of settings via the @Flow\\Inject annotation.
Instead, use the @Flow\InjectConfiguration annotation.

Remove deprecated TypeHandling::hex2bin method

Remove deprecated StringHelper::match method

Remove deprecated Http\\Message class

Remove deprecated TranslationHelper::translateById

Remove deprecated redirectToReferringRequest

Remove deprecated Route::getMatchingUri

Remove output related methods from AbstractMigration

Remove deprecated methods from TemplateView

Upgrading your Packages

Upgrading existing code

There have been major API changes in Flow 4.0 which require your code to be adjusted. As with earlier changes to Flow
that required code changes on the user side we provide a code migration tool.

Given you have a Flow system with your (outdated) package in place you should run the following before attempting to fix
anything by hand:

./flow core:migrate --package-key Acme.Demo

The package key is optional, if left out it will work on all packages it finds (except for library packages and packages
prefixed with “TYPO3.*” or “Neos.*”) - for the first run you might want to limit things a little to keep the overview,
though.

Make sure to run:

./flow help core:migrate

to see all the other helpful options this command provides.

Inside core:migrate

The tool roughly works like this:

	Collect all code migrations from packages

	Collect all files from all packages (except Framework and
Libraries) or the package given with --package-key

	For each migration and package

	Check for clean git working copy (otherwise skip it)

	Check if migration is needed (looks for Migration footers in commit
messages)

	Apply migration and commit the changes

Afterwards you probably get a list of warnings and notes from the
migrations, check those to see if anything needs to be done manually.

Check the created commits and feel free to amend as needed, should
things be missing or wrong. The only thing you must keep in place from
the generated commits is the migration data in composer.json. It is
used to detect if a migration has been applied already, so if you drop
it, things might get out of hands in the future.

Upgrading the database schema

Upgrading the schema is done by running:

./flow doctrine:migrate

to update your database with any changes to the framework-supplied
schema.

Famous last words

In a nutshell, running:

./flow core:migrate
./flow doctrine:migrationgenerate

in Development Context, padded with some manual checking and adjustments needs to be done.
That should result in a working package.

If it does not and you have no idea what to do next, please get in touch
with us.

ChangeLogs

To view the ChangeLogs for released versions, check the ChangeLogs chapter in the documentation of
the corresponding branch.

	5.1.9 (2019-06-14)

	5.1.8 (2019-03-25)

	5.1.7 (2019-02-10)

	5.1.6 (2019-01-10)

	5.1.5 (2018-11-21)

	5.1.4 (2018-11-12)

	5.1.3 (2018-10-29)

	5.1.2 (2018-10-02)

	5.1.18 (2020-05-04)

	5.1.17 (2019-12-13)

	5.1.16 (2019-11-06)

	5.1.15 (2019-10-25)

	5.1.14 (2019-10-14)

	5.1.13 (2019-09-24)

	5.1.12 (2019-09-05)

	5.1.11 (2019-09-02)

	5.1.10 (2019-06-17)

	5.1.1 (2018-08-30)

	5.1.0 (2018-08-29)

5.1.9 (2019-06-14) [https://github.com/neos/flow-development-collection/releases/tag/5.1.9]

Overview of merged pull requests

TASK: Tweak dev dependencies [https://github.com/neos/flow-development-collection/pull/1608]

See https://github.com/neos/flow-development-collection/pull/1584

BUGFIX: Avoid error in Debugger::findProxyAndShortFilePath() [https://github.com/neos/flow-development-collection/pull/1613]

If $file points to eval’d code, the @file(…) code does not return
an array, leading to count() being called on an incompatible value.

	Packages: Flow

TASK: Fix formatting of note [https://github.com/neos/flow-development-collection/pull/1609]

Related to #1587

	Packages: Flow

BUGFIX: Flow CLI command warns of mismatching php version [https://github.com/neos/flow-development-collection/pull/1391]

If Flow builds a PHP command for a subrequest, it uses the system default if nothing else is configured. With this change, we avoid Flow executing that request if it isn’t explicitly configured to use that same PHP version internally too. This should avoid some errors especially in shared hosting scenarios for less experienced users.

	Packages: Flow

BUGFIX: Avoid problem loading files in SimpleXML [https://github.com/neos/flow-development-collection/pull/1600]

Workaround for https://bugs.php.net/bug.php?id=62577

Fixes #1598

BUGFIX: Fix InvalidControllerException is never thrown [https://github.com/neos/flow-development-collection/pull/1605]

IDE complained that a InvalidControllerException is never thrown in the corresponding try-catch-block and i think thats right. Instead there is a InvalidRoutePartValueException thrown in Route:resolves() that should be caught.

	Packages: Flow

BUGFIX: Fix TypeError if subpackage is empty [https://github.com/neos/flow-development-collection/pull/1597]

Sorry, found another one…

if subpackage is empty RoutingCommandController:getControllerObjectName() should be called with an empty string for the subPackageKey argument. Otherwise an TypeError is thrown because the argument is not nullable.

	Packages: Flow

TASK: Synchronise .travis.yml with Neos [https://github.com/neos/flow-development-collection/pull/1601]

Backport of bcab2bb4fbea62f3ba7bfddc5bd4f22ab4d96675 [https://github.com/neos/flow-development-collection/commit/bcab2bb4fbea62f3ba7bfddc5bd4f22ab4d96675] to fix builds on 4.3 that use wrong DB in mysql setups and fail
https://travis-ci.org/neos/flow-development-collection/builds/536249389

BUGFIX: Return type hint should reflect nullable [https://github.com/neos/flow-development-collection/pull/1596]

If no controller could be found for the given arguments RoutingCommandController:getControllerObjectName() returns null. The return type hint should reflect that to avoid a TypeError.

	Packages: Flow

TASK: Add section for configuration of trusted proxies in container [https://github.com/neos/flow-development-collection/pull/1587]

Adds a small note that mentions having to configure the trusted proxies in ddev and similar environments. Also explains that Flow therefore trusts all proxies by default in Development context.

Depends on #1586

	Packages: Flow

TASK: Translator uses locale chain [https://github.com/neos/flow-development-collection/pull/1451]

This change makes getTranslationById and getTranslationByOriginalLabel use the configured
locale chain.

This is an updated version of #327 and #328. Please see the discussions there. May be retargeted on master.

	Packages: Flow

TASK: Restrict allowed classes in unserialize call [https://github.com/neos/flow-development-collection/pull/1594]

	Packages: Flow

BUGFIX: Remove Doctrine from require-dev [https://github.com/neos/flow-development-collection/pull/1584]

It’s already a require, so the duplication just causes problems, when the versions don’t match any more (as they do in current master).

BUGFIX: Use source as target if target-language is empty in XLIFF [https://github.com/neos/flow-development-collection/pull/1555]

The target element in XLIFF is optional, and even though we recommend
in the documentation to set it, most people omit the target for
“source” XLIFF files (i.e. having english content and target-language
being unset).

For these cases the XliffParser now reads the source element content
into the target element. This makes the fallback rules work for
individual translations and not only full XLIFF files.

In other words: when a new string is added to a source catalog, it
will be used as is even when no translation is available – instead of
simply the id being output.

	Packages: Flow

BUGFIX: Avoid PHP exception in NamespaceDetectionTemplateProcessor [https://github.com/neos/flow-development-collection/pull/1573]

Add error checking when splitting on shorthand syntax.

See https://github.com/neos/neos-development-collection/pull/2484
Related to https://github.com/neos/neos-development-collection/issues/2479

	Packages: Flow FluidAdaptor

[SECURITY] Avoid OpenSSL padding oracle attacks [https://github.com/neos/flow-development-collection/pull/1567]

This avoids OpenSSL Padding Oracle Information Disclosure by
allowing to specify the padding algorithm used in the RSA wallet
service.

Most probably you are not even affected, since only OpenSSL 1.0.1t
and 1.0.2h are vulnerable, but better safe than sorry.

The padding algorithm default is changed to OPENSSL_PKCS1_OAEP_PADDING,
but a fallback decryption is in place for all data that was encrypted with the
previously unsafe padding algorithm.
Therefore you should migrate all your existing encrypted data, by running it through
decryptWithPrivateKey and then again through encryptWithPublicKey ONCE.

Fixes #1566

BUGFIX: Avoid type error when a non taggable cache backend gets flushed by tag [https://github.com/neos/flow-development-collection/pull/1537]

The typehint of the flushByTag method expected an int return type, but the method inside the AbstractFrontend returned void when a non taggable backend was flushed. This was the case for a SimpleFileBackend for example and led to an error.

	Packages: Cache Flow

TASK: Better naming for include and exclude paths/patterns [https://github.com/neos/flow-development-collection/pull/1550]

Get rid of wording “blacklist”/”whitelist” because there’s better terms.
Should have been named like this from the start. I’m to blame.

	Packages: Flow

BUGFIX: Replace missing getResolvedUriPath in getPathCommand [https://github.com/neos/flow-development-collection/pull/1523]

Fixes: #1522

	Packages: Flow

Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.8...5.1.9]

5.1.8 (2019-03-25) [https://github.com/neos/flow-development-collection/releases/tag/5.1.8]

Overview of merged pull requests

BUGFIX: Ignore template/psalm annotations [https://github.com/neos/flow-development-collection/pull/1530]

Fixes #1529 by adjusting the configuration.

BUGFIX: add `template` and `psalm` to ignoredTags [https://github.com/neos/flow-development-collection/pull/1528]

Fixes: #1529

	Packages: Flow

BUGFIX: Accessing non existing array keys can cause a PHP Notice. [https://github.com/neos/flow-development-collection/pull/1511]

Would be better to check the array keys before using them.

INFO: For some langauges like “zh” (china), the property “$this->rulesets” is
not filled properly. So accessing for example “$this->rulesets[‘zh’]” will cause
a PHP Notice: “Undefined index”.

What I did

In my fluidtemplate, i want to translate a language ID from “zh/Main.xlf” with this code:

```
{f:translate(


id: ‘lang.id.with.plurals.definition’,
package: ‘Some.Package’,
source: ‘Main.xlf’,
locale: ‘zh’,
quantity: 2





)}

The definition of this language ID in my “zh/Main.xlf” is this:

```
<group id=”lang.id.with.plurals.definition” restype=”x-gettext-plurals”>

	<trans-unit id=”lang.id.with.plurals.definition[0]”>

	<source>Acme default Foo</source>
<target>Acme ZH Foo</target>

</trans-unit>
<trans-unit id=”lang.id.with.plurals.definition[1]”>

<source>Acme default Foos</source>
<target>”Acme ZH Foos</target>

</trans-unit>

</group>
```


	Packages: Flow









TASK: add pushResult for Property example [https://github.com/neos/flow-development-collection/pull/1518]

This is a direct copy of https://github.com/neos/flow/pull/19 - thanks @kaystrobach


	Packages: Flow







BUGFIX: Fix typo in function [https://github.com/neos/flow-development-collection/pull/1517]


	Packages: Cache Flow







BUGFIX: Allow testing provider everywhere [https://github.com/neos/flow-development-collection/pull/1516]

The TestingProvider should be available for all controllers/routes not only for Flow testing controllers otherwise the generic possibility to authenticateRoles in the FunctionalTestCase makes no sense for any other package. In the respective case a Neos test tried to authenticate roles but these would never have an effect due to the patterns.


	Packages: Flow







BUGFIX: Fix exit code for unresolved CLI commands [https://github.com/neos/flow-development-collection/pull/1505]

Fixes the exit code of


./flow non:existing:command




to be 1 instead of 0.

Fixes: #1504


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.7...5.1.8]







          

      

      

    

  

    
      
          
            
  
5.1.7 (2019-02-10) [https://github.com/neos/flow-development-collection/releases/tag/5.1.7]


Overview of merged pull requests


TASK: Avoid code migration error if source file does not exist [https://github.com/neos/flow-development-collection/pull/1483]

This avoids errors like fatal: bad source, source=Packages/Sites/Acme.AcmeCom/Resources/Private/Fusion/Root.ts2, destination=Packages/Sites/Acme.AcmeCom/Resources/Private/Fusion/Root.fusion during core:migrate.


	Packages: Flow







BUGIFX: Correctly check for TaggableBackendInterface [https://github.com/neos/flow-development-collection/pull/1499]

The is_a only checks for parents but not for implemented interfaces. is_sublcass_of should be used instead to check if the $backendClassName implements the interface


	Packages: Cache Flow







TASK: Use proper dummy hash in PersistedUsernamePasswordProvider [https://github.com/neos/flow-development-collection/pull/1495]

This replaces the dummy hash used to prevent timing based attacks by
a valid hash for a random password that was never actually stored
somewhere.

This avoids problems with PHP’s encryption methods. With the
previous hash, the hashing was sometimes not applied properly
and the method returns early so that the time-based information
disclosure vulnerability still exists.


	Packages: Flow







BUGFIX: Support “/” in file upload fields [https://github.com/neos/flow-development-collection/pull/1469]

Adds support for file uploads with “/”s in their names.
Adds a Request::calculateFieldPathsAsArray method
returning the paths as arrays instead of “/”-separated strings
(later “/”-split again).
Keeps the calculateFieldPaths method returning the paths as
strings for backwards-compatibility.

Fixes #1467


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.6...5.1.7]







          

      

      

    

  

    
      
          
            
  
5.1.6 (2019-01-10) [https://github.com/neos/flow-development-collection/releases/tag/5.1.6]


Overview of merged pull requests


BUGFIX: Lower recursion limit for debugger from 50 to 5 [https://github.com/neos/flow-development-collection/pull/1493]

With the previous recursion limit of 50 php often ran into memory-limits when debugging larger data structures.


	Packages: Flow







TASK: Fix wrong return type annotation [https://github.com/neos/flow-development-collection/pull/1486]


	Packages: Flow







BUGFIX: Fix wrong exception message [https://github.com/neos/flow-development-collection/pull/1484]

This fixes an error caused by a wrong format string used to
generate an exception message when a private property is
annotated for configuration injection.


	Packages: Flow







TASK: Fix risky unit test [https://github.com/neos/flow-development-collection/pull/1480]

The changed test does contain an expects but did advertise it
@doesNotPerformAssertions, leading PhpUnit to consider the
test as risky.


	Packages: Flow







TASK: Add image/jp2 to known media types [https://github.com/neos/flow-development-collection/pull/1482]


	Packages: MediaTypes







TASK: PHP 7.3 - Use break instead of continue within a switch case [https://github.com/neos/flow-development-collection/pull/1473]

Starting in PHP 7.3, PHP will throw a warning when using continue
within a switch to confirm intent. In PHP, within switch, break
and continue do the same thing.


	Packages: Flow







BUGFIX: Make dev collection and neos/flow dependencies match [https://github.com/neos/flow-development-collection/pull/1475]

The dependabot changes done to the dev collections are not good. Why? Because dependabot only changes the top-level composer.json bit leaves the manifests in Neos.Flow untouched.

This makes sure the dependencies in the collection match the neos/flow dependencies again, to avoid breaking things for people.

Related to neos/neos-development-collection#2310


	Packages: Flow







BUGFIX: Remove return type declaration, ask() can return mixed value [https://github.com/neos/flow-development-collection/pull/1465]


	Packages: Flow FluidAdaptor







BUGFIX: Revert merge #1442 from neos/albe-typehandling-fix [https://github.com/neos/flow-development-collection/pull/1466]

This reverts commit f92ec4094b70dc74ba44afec8052bc2ca05e6b11 [https://github.com/neos/flow-development-collection/commit/f92ec4094b70dc74ba44afec8052bc2ca05e6b11], reversing
changes made to a00a7512f50a3806857223e8d61d69c86232cdb2 [https://github.com/neos/flow-development-collection/commit/a00a7512f50a3806857223e8d61d69c86232cdb2].

See https://github.com/neos/flow-development-collection/pull/1442


	Packages: ObjectHandling







BUGFIX: Avoid strlen call on null value [https://github.com/neos/flow-development-collection/pull/1463]

The CropViewHelper should gracefully handle null values
internally. Otherwise you get Argument 1 passed to
Neos\Utility\Unicode\Functions::strlen() must be of the type string,
null given errors.


	Packages: FluidAdaptor







TASK: Add support for DateTimeImmutable classes mapping with doctrine [https://github.com/neos/flow-development-collection/pull/1401]

This change correctly maps DateTimeImmutable property types with doctrine.

Depends on #1442




TASK: Fix duplicate FLOW_VERSION_BRANCH declaration after upmerge [https://github.com/neos/flow-development-collection/pull/1462]

A duplicate declaration of FLOW_VERSION_BRANCH slipped in while upmerging from 4.3


	Packages: Flow FluidAdaptor ObjectHandling







TASK: Correct documentation for fusionPathPatterns on FusionView [https://github.com/neos/flow-development-collection/pull/1430]

What I did

I have changed the example for configuring the view through Views.yaml. Currently there is an old integration which doesn’t work.


	Packages: Flow







BUGFIX: Properly parse `DateTimeImmutable` types [https://github.com/neos/flow-development-collection/pull/1442]

Currently, a type string of DateTimeImmutable will be parsed as DateTime. This, for example, leads to any entity properties annotated as @var DateTimeImmutable to be hydrated into a DateTime class instead.

Note that this is a hotfix at most, because the real issue is, that the regex does not check for a type ending character, like whitespace, line end or another non-word character. Therefore, it eagerly parses DateTimeImmutable by matching the DateTime prefix and taking that as the parsed type, which is wrong.


	Packages: ObjectHandling







BUGFIX: Fix format for json_encoded DateTime conversion [https://github.com/neos/flow-development-collection/pull/1438]

The format for converting from JSON encoded DateTime was wrong. The format doesn’t use the \T separator, but a whitespace and as it seems, v is not a valid format specifier for DateTime::createFromFormat while it is for date().

http://php.net/manual/en/datetime.createfromformat.php
> In most cases, the same letters as for the [date()](http://php.net/manual/en/function.date.php) can be used.

Also, this provides a test to actually verify the functionality.
Related to #1415


	Packages: Flow







BUGFIX: Support the parser halt fluid token [https://github.com/neos/flow-development-collection/pull/1450]

This adds the missing template pre-processor to the Neos.FluidAdaptor RenderingContext.
Actually, it is not missing but gets removed upon setting the template pre-processors.

Fixes #1449


	Packages: FluidAdaptor







BUGFIX: Make cache application identifier configurable [https://github.com/neos/flow-development-collection/pull/1457]

In multiple permutations, we tried to fix problems with cache identifier
uniqueness in cache backends that are shared like apcu or memcache.
In earlier days it included the PHP_SAPI and then in more recent times
the context and root path. With the refactoring of caches, these two
became the hardcoded applicationIdentifier which can be used by
any backend to add more specificity to cache identifiers.

It turns out that the root path doesn’t work well for some environments
and can result in bugs when used with eg. the PdoBackend and a
deployment that changes the root path (typical Surf or Deployer).

The only backward compatible way to fix this was to make the
applicationIdentifier configurable with a default that matches the
previously hardcoded values. That way nothing changes in existing
installations but if the bug appears it can be easily fixed.


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.5...5.1.6]







          

      

      

    

  

    
      
          
            
  
5.1.5 (2018-11-21) [https://github.com/neos/flow-development-collection/releases/tag/5.1.5]


Overview of merged pull requests


BUGFIX: Throw MappingException in loadMetaDataForClass [https://github.com/neos/flow-development-collection/pull/1454]

When no class schema can be found in loadMetaDataForClass, a Doctrine
MappingException is now thrown. This makes our code work nicely with the
change in https://github.com/doctrine/doctrine2/pull/7471/ that otherwise
leads to errors like this as of ORM 2.6.3:

```
FlowAnnotationDriver.php: No class schema found for “some-non-mapped-class”.

89 …\FlowAnnotationDriver_Original::getClassSchema(“some-non-mapped-class”)
88 …\FlowAnnotationDriver_Original::loadMetadataForClass(“some-non-mapped-class”, Neos\Flow\Persistence\Doctrine\Mapping\ClassMetadata)
```

Fixes #1453


	Packages: Flow







BUGFIX: Fix console helpers [https://github.com/neos/flow-development-collection/pull/1436]

Fix description for select method and return type an therefore tests for askAndValidate.


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.4...5.1.5]







          

      

      

    

  

    
      
          
            
  
5.1.4 (2018-11-12) [https://github.com/neos/flow-development-collection/releases/tag/5.1.4]


Overview of merged pull requests


!!! BUGFIX: Allow actually reconfiguring the ThrowableStorage [https://github.com/neos/flow-development-collection/pull/1422]

This fixes the instantiation and configuration of ThrowableStorage
implementations and also fixes stack traces and HTTP request information
in stored throwables.

This change is not breaking but as pre notice that in the next major the
ThrowableStorageInterface will have an additional method that is currently
commented and already used to instantiate throwable storages.
If you implement the interface you must already implement that additional
method despite it being not part of the interface. As the object configuration
for throwable storage doesn’t work without this change there cannot be a
working alternative implementation yet, so this shouldn’t break any project.


	Packages: Flow







BUGFIX: Avoid “wrong” error if Redis is unavailable [https://github.com/neos/flow-development-collection/pull/1431]

At least when running unit tests for the MultiBackend the connect()
call raises an error that circumvents exception handling and breaks
correct execution.


	Packages: Cache Flow







BUGFIX: Add nullable parameter detection [https://github.com/neos/flow-development-collection/pull/1388]

Nullable paramters (type prepended with ?) were introduced with PHP 7.1
see https://secure.php.net/manual/en/migration71.new-features.php#migration71.new-features.nullable-types

We need to support a syntax like functionName(?string $param). Without this fix, this function will get extended as functionName(string $param), which is incompatible.

Starting with PHP 7.1 functionName(string $param = null) can also be written as functionName(?string $param = null) (but not as ~~`functionName(?string $param)`~~).

For the upmerge with Flow >= 5.0, the PHP version check in line 275 can be removed since at least PHP 7.1 is required there.


	Packages: Flow







TASK: Fix typo in @see annotation [https://github.com/neos/flow-development-collection/pull/1425]


	Packages: Flow FluidAdaptor









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.3...5.1.4]







          

      

      

    

  

    
      
          
            
  
5.1.3 (2018-10-29) [https://github.com/neos/flow-development-collection/releases/tag/5.1.3]


Overview of merged pull requests


TASK: Support converting from json_serialized DateTime [https://github.com/neos/flow-development-collection/pull/1415]

This change adds support for converting values that are received from serializing a DateTimeInterface object with json_serialize.
If the source array contains a property ‘timezone_type’ the source date string is assumed to be in the internal serialization format, which is “Y-m-d\TH:i:s.v” without timezone information, since the timezone is provided in the additional ‘timezone’ property.

Related to https://github.com/neos/Neos.EventSourcing/issues/181

TODO: Add tests


	Packages: Flow







BUGFIX: Enable maxlength for the form.textarea viewhelper [https://github.com/neos/flow-development-collection/pull/1412]

Bugfix because it is possible to configure a maxlength in the form framework, but this leads to an exception. I didn’t realize there was no maxlength when I put it in form framework and the reviewers didn’t notice either, so now it is required to have it in the viewhelper.

maxlength in textarea is possible since html5 and is supported by all major browsers including IE since 10 ;)

Checklist


	[x] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow FluidAdaptor







BUGFIX: Correct naming for setting [https://github.com/neos/flow-development-collection/pull/1413]

Resolves: #1409

Checklist


	[x] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)







TASK: Fix phpunit coverage reports [https://github.com/neos/flow-development-collection/pull/1400]

Fixes: #1397




` BUGFIX: doctrine:migrationgenerate won’t move file to selected package  <https://github.com/neos/flow-development-collection/pull/1394>`_

Fixes an issue where running doctrine:migrationgenerate would never move the migration-file to the selected package. After doctrine:migrationgenerate has generated a migration, it asks whether the migration-file should be moved to a specific package. No matter what you choose, it would assume you chose “Don’t Move”.

Also fixes two related issues in the ConsoleOutput’s select method:
- Wrong typehint on $default, breaking the default answer functionality
- Wrong phpdoc typehint on $attempts, as it is an integer, not a boolean.

I added a testcase and modified a couple of other testcases for the ConsoleOutput as well.


	Packages: Flow







Revert “BUGFIX: Extend the expected exceptions for missing templates and sections” [https://github.com/neos/flow-development-collection/pull/1379]

Reverts neos/flow-development-collection#1348


	Packages: FluidAdaptor







BUGFIX: Extend the expected exceptions for missing templates and sections [https://github.com/neos/flow-development-collection/pull/1348]

typo3fluid/fluid expects specific exceptions to be thrown to implement
the feature of optional sections and partials. Neos.FluidAdaptor has to
throw these exceptions or derivates of them. Otherwise the exceptions won’t
be catched and displayed to the user.

fixes: #1347

What I did

I implemented solution 1 from the issue

How I did it

I made the exceptions shipped with FluidAdaptor inherit from the expected ones from typo3fluid/fluid

How to verify it

Try to reproduce the issue after applying the patch

Checklist


	[X] Code follows the PSR-2 coding style


	[ ] Tests have been created, run and adjusted as needed


	[X] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow FluidAdaptor









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.2...5.1.3]







          

      

      

    

  

    
      
          
            
  
5.1.2 (2018-10-02) [https://github.com/neos/flow-development-collection/releases/tag/5.1.2]


Overview of merged pull requests


BUGFIX: Allow nullable constructor arguments [https://github.com/neos/flow-development-collection/pull/1358]

In PropertyMapper checks if the $targetType is nullable and the given source, too. If this is true, return null. Also, in ReflectionService, the annotated type is properly expanded when annotated with ‘|null' or 'null|’.

Checklist


	[x] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)




Alternative push for #1353

Fixes #1361


	Packages: Flow







BUGFIX: correctly handle 410 redirect exceptions [https://github.com/neos/flow-development-collection/pull/1387]

The redirect package throws exceptions on 410, but currently they are not caught, the way 404 exceptions are handled.

Checklist


	[x] Code follows the PSR-2 coding style


	[ ] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow







BUGFIX: Extend the expected exceptions for missing templates and sections [https://github.com/neos/flow-development-collection/pull/1378]

typo3fluid/fluid expects specific exceptions to be thrown to implement
the feature of optional sections and partials. Neos.FluidAdaptor has to
throw these exceptions or derivates of them. Otherwise the exceptions won’t
be catched and displayed to the user.

fixes: #1347

Follow-Up for #1348 with correct target.


	Packages: Flow FluidAdaptor









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.1...5.1.2]







          

      

      

    

  

    
      
          
            
  
5.1.18 (2020-05-04) [https://github.com/neos/flow-development-collection/releases/tag/5.1.18]


Overview of merged pull requests


BUGFIX: Make sure to use only a consistent NumbersReaderCache [https://github.com/neos/flow-development-collection/pull/1991]

It might happen that there is a discrepancy between parsedFormatsIndices and parsedFormats cache. We need to make sure we are accessing the consistent information instead of relying that both are there, to avoid a PHP exception.

Same fix was already applied to DatesReader, see https://github.com/neos/flow-development-collection/pull/1899.

Resolves #564

Checklist


	[ ] Code follows the PSR-2 coding style


	[ ] Tests have been created, run and adjusted as needed


	[ ] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow







BUGFIX: Make sure to use only a consistent DatesReaderCache [https://github.com/neos/flow-development-collection/pull/1899]

It might happen that there is a discrepancy between parsedFormatsIndices and parsedFormats cache. We need to make sure we are accessing the consistent information instead of relying that both are there, to avoid a PHP exception.

Resolves #564

The problem described in #564 is not easy to reproduce, as it only happens “once in a while” in production. See issue comments for further information.

Checklist


	[x] Code follows the PSR-2 coding style


	[ ] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow







BUGFIX: Fix error handling for importing resources [https://github.com/neos/flow-development-collection/pull/1888]

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

While working with ResourceManager I noticed that importing non-existent resources would fail later in the process than expected: They would only fail when trying to copy the temporary file to it’s persistent location instead of failing when fetching the original file.

What I did
This PR fixes the incorrect error handling of fetching files when importing resources.

How I did it
The code assumed that copy would throw an exception if it failed - however, it returns false in that case.

How to verify it
Try to import a non-existent resource (e.g. http://example.com/this-file-does-not-exist). It should now correctly throw the Could not copy the file from “…” to temporary file “…” exception  from WritableFileSystemStorage::importResource instead of the much later The temporary file of the file import could not be moved to the final target “…” from WritableFileSystemStorage::moveTemporaryFileToFinalDestination

Checklist


	[x] Code follows the PSR-2 coding style


	[ ] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.17...5.1.18]







          

      

      

    

  

    
      
          
            
  
5.1.17 (2019-12-13) [https://github.com/neos/flow-development-collection/releases/tag/5.1.17]


Overview of merged pull requests


TASK: Remove code dealing with removed class/interface [https://github.com/neos/flow-development-collection/pull/1873]

The FlowSpecificBackendInterface as well as Neos\Flow\Cache\Backend
are gone with Flow 5.0, so this code is never executed.

The implements CacheFactoryInterface is redundant, thus removed.


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.16...5.1.17]







          

      

      

    

  

    
      
          
            
  
5.1.16 (2019-11-06) [https://github.com/neos/flow-development-collection/releases/tag/5.1.16]


Overview of merged pull requests


Revert “BUGFIX: Respect Neos.Flow.http.baseUri path in UriBuilder” [https://github.com/neos/flow-development-collection/pull/1841]

Reverts neos/flow-development-collection#1682


	Packages: Flow







BUGFIX: Remove unnecessary colons [https://github.com/neos/flow-development-collection/pull/1838]

Removes unnecessary colons that broke the markup.


	Packages: Flow







BUGFIX: Fix @return annotation on getObjects() [https://github.com/neos/flow-development-collection/pull/1830]


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.15...5.1.16]







          

      

      

    

  

    
      
          
            
  
5.1.15 (2019-10-25) [https://github.com/neos/flow-development-collection/releases/tag/5.1.15]


Overview of merged pull requests


BUGFIX: Wrap statements in a transaction [https://github.com/neos/flow-development-collection/pull/1826]

The PDO backend will run multiple single insert statements for each
cache entry, which can result in high overhead.

When wrapping the statements within a transaction, the cost
is significantly lower depending on the number of generated
cache entries necessary for the current request.

Performance tests show a comparably small impact on the demo page with
a gain of around 100ms - 150ms, and up to 2000ms on a larger product
overview page with a high number of generated cache entries.


	Packages: Cache







BUGFIX: Prevent error when iterating header keys [https://github.com/neos/flow-development-collection/pull/1822]


	Packages: Flow







TASK: Extract inferDiscriminatorTypeFromClassName() method [https://github.com/neos/flow-development-collection/pull/1818]


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.14...5.1.15]







          

      

      

    

  

    
      
          
            
  
5.1.14 (2019-10-14) [https://github.com/neos/flow-development-collection/releases/tag/5.1.14]


Overview of merged pull requests


TASK: Clarify explanation of ignoredTables setting [https://github.com/neos/flow-development-collection/pull/1813]


	Packages: Flow







BUGFIX: Don’t overwrite previous Set-Cookie headers in the session component [https://github.com/neos/flow-development-collection/pull/1810]

This would e.g. overwrite cookies set with the FlashMessage CookieStorage.

Related to #1807

Replacement for #1808 targeted onto 5.1


	Packages: Flow







BUGFIX: Check for AbstractLazyCollection in CollectionValidator [https://github.com/neos/flow-development-collection/pull/1798]

Use more generic AbstractLazyCollection instead of PersistentCollection in isValid() of CollectionValidator to prevent lazy collection of classes extending AbstractLazyCollection to get loaded.

In our case we are extending the AbstractLazyCollection to add some additional functionality when handling lazy collections. Due to the final Implementation of PersistentCollection we are not able to extend this class.

During the isValid() check, all data in the collection is loaded from the database and we run into an out of memory error, because our collection is an instance of AbstractLazyCollection and not PersistentCollection.

I added an additional unit test collectionValidatorIsValidEarlyReturnsOnUnitializedDoctrineAbstractLazyCollections to the PR.

See #1796 (now targeting 4.3)


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.13...5.1.14]







          

      

      

    

  

    
      
          
            
  
5.1.13 (2019-09-24) [https://github.com/neos/flow-development-collection/releases/tag/5.1.13]


Overview of merged pull requests


BUGFIX: resource:clean will remove resource from right collection [https://github.com/neos/flow-development-collection/pull/1678]

This fix makes sure resource:clean will remove broken resources from the right collection.

The problem is that you save the SHA1 for a broken resource. Now think about the following case: You have two resources with the same SHA1, but from two different collections (persistent/temporary). The resource inside the temporary-Collection was removed and now you run the command.

It will detect the missing resource from the temporary-Collection and add the SHA1 to $brokenResources. Now when iteration over $brokenResources to get the PersistentResource you are using $this->resourceRepository->findOneBySha1($resourceSha1), which ignores the collection. So you can’t be sure to get the PersistentResource from the temporary-Collection that you actually want, it’s possible that you get the one from the persistent-Collection. This would result in deleting the wrong PersistentResource and not removing the broken resource but creating a new problem.

The fix just saves the identifier of the PersistentResource to $brokenResources and later detects the correct one agin by using $this->resourceRepository->findByIdentifier($resourceIdentifier).


	Packages: Flow







` BUGFIX: Replacing suffixes appends, if nothing to replace <https://github.com/neos/flow-development-collection/pull/1741>`_

The UriConstraints behaves weird with replaceSuffixes on hosts: if the suffix to
replace is not found, the replacement is appended to the host - instead of nothing
happening.


	Packages: Flow







TASK: Add example development config for allowing all proxies [https://github.com/neos/flow-development-collection/pull/1646]

In order to make https://github.com/neos/flow-development-collection/pull/1586 more approachable without actually setting a default value in Development.


	Packages: Flow







BUGFIX: Adjust installation documentation to account for missing routes config [https://github.com/neos/flow-development-collection/pull/1748]

Adds missing documentation that it is required to rename Settings.yaml.example in order to
have working routing and see the “Welcome” page.

See https://github.com/neos/flow-development-collection/issues/868#issuecomment-279682930

Thanks M.B. from our forum for bringing it up again.


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.12...5.1.13]







          

      

      

    

  

    
      
          
            
  
5.1.12 (2019-09-05) [https://github.com/neos/flow-development-collection/releases/tag/5.1.12]


Overview of merged pull requests


Revert “TASK: Include TYPO3Fluid for reflection” [https://github.com/neos/flow-development-collection/pull/1760]

This reverts commit e5bb869d3d1262080bbe687095e7b4a58789d971 [https://github.com/neos/flow-development-collection/commit/e5bb869d3d1262080bbe687095e7b4a58789d971].

This is necessary, because the inclusion of Fluid in reflection for 4.3 introduced a regression, due to a wrong annotation in Fluid versions < 2.3.

See https://github.com/TYPO3/Fluid/pull/260

Fixes #1756

NOTE: This revert should not be included in upmerges, since the issue does not exist in Flow 5.0+ as it requires Fluid 2.5 minimum


	Packages: Flow







TASK: Loosen typo3fluid/fluid dependency [https://github.com/neos/flow-development-collection/pull/1757]

Adjusts the dependency declared in neos/fluid-adaptor to complement https://github.com/neos/flow-development-collection/pull/1638 and thus fix https://github.com/neos/flow-development-collection/pull/1756


	Packages: Flow FluidAdaptor







BUGFIX: Allow string for trusted proxies again (env variable use) [https://github.com/neos/flow-development-collection/pull/1752]

Fixes a regression introduced with #1683


	Packages: Flow







BUGFIX: Don’t redirect `.well-known` [https://github.com/neos/flow-development-collection/pull/1750]

This is necessary in order to allow e.g. certbot to do it’s job.


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.11...5.1.12]







          

      

      

    

  

    
      
          
            
  
5.1.11 (2019-09-02) [https://github.com/neos/flow-development-collection/releases/tag/5.1.11]


Overview of merged pull requests


BUGFIX: Handle configuration value “false” for trusted proxies [https://github.com/neos/flow-development-collection/pull/1746]

This fixes the case when a configured environment variable (like the default FLOW_HTTP_TRUSTEDPROXIES) is not set, in which case the value will be false.


	Packages: Flow







BUGFIX: Make ScriptsMock::buildSubprocessCommand signature match parent [https://github.com/neos/flow-development-collection/pull/1742]

This prevents a Warning notice in Unit Tests.

Related to #1731


	Packages: Flow







TASK: Include TYPO3Fluid for reflection [https://github.com/neos/flow-development-collection/pull/1637]

This is needed to be able to generate a XSD schema for the TYPO3 Fluid default ViewHelpers.

Depends on #1638


	Packages: Flow







BUGFIX: Allow a single ‘*’ entry in trustedProxies [https://github.com/neos/flow-development-collection/pull/1683]

This makes the setting Neos.Flow.http.trustedProxies.proxies behave equal for a setting of
“*” or [“*”] or - “*”.


	Packages: Flow







TASK: Fix ScriptTest invoking dummy commands [https://github.com/neos/flow-development-collection/pull/1731]

Also, the static class does not need to be mocked with PHPUnit, as PHPUnit can not stub static methods anyway.


	Packages: Flow







BUGFIX: Do not join select property paths to embedded objects [https://github.com/neos/flow-development-collection/pull/1404]

Instead of assuming that every property path with a dot is a path
to an other entity check if the property path is a mapped field which
is also true for embedded object properties.

Resolves #989

What I did
We’ll i suppose i fixed it :sweat_smile:

How I did it
I searched the existing class schema for hints about embedded properties and found it in the entityManager. When the path exists in the fieldMappings it is a field embedded in the object’s table. Since we’re using doctrine in this kind of query anyway i think we’re safe to go whit this solution.

How to verify it
The description of the original bug should be suffice.

Checklist


	[X] Code follows the PSR-2 coding style


	[x] Tests have been created, run and adjusted as needed


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html)





	Packages: Flow







FEATURE: Allow rebasing PR via comment [https://github.com/neos/flow-development-collection/pull/1727]

Just type /rebase in the comment and this workflow will attempt a rebase.

Uses https://github.com/cirrus-actions/rebase


	Packages: github







TASK: Use var_dump return parameter [https://github.com/neos/flow-development-collection/pull/1686]

What I did
When digging through the code I found this instance of capturing the output of \Neos\Flow\var_dump using ob_get_contents when \Neos\Flow\var_dump has a $return parameter itself.

How I did it
Using the $return parameter of \Neos\Flow\var_dump


	Packages: Flow FluidAdaptor







TASK: Make array indexing difference more visible [https://github.com/neos/flow-development-collection/pull/1675]

Previously, if an array was expected but a non numerically indexed array (i.e. a “dictionary”) was given, the error message would output expected: type=array found: type=array, which is totally confusing.

See https://github.com/neos/flow-development-collection/pull/1637


	Packages: Schema







BUGFIX: Authentication: Only intercept GET requests [https://github.com/neos/flow-development-collection/pull/1695]

Adjusts the Dispatcher so that it only intercepts GET
requests in order to prevent unwanted side effects when
redirecting to an unsafe request.

Fixes: #1694


	Packages: Flow







BUGFIX: Respect Neos.Flow.http.baseUri path in UriBuilder [https://github.com/neos/flow-development-collection/pull/1682]

If Neos.Flow.http.baseUri contains a path, it was not respected
during uri building.

See: #1185
Resolves: #1215

What I did
Add path of Neos.Flow.http.baseUri to ResolveContext’s uriPathPrefix.

How to verify it
Configure Neos.Flow.http.baseUri to be an absolute URI with path, build URI to any Controller.


	Packages: Flow







BUGFIX: Allow using Flow with PHP wrappers [https://github.com/neos/flow-development-collection/pull/1643]

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did

Add support for using a fallback to verify whether the PHP_BINARY for the currently configured PHP binary file matches the one being used currently.

The current logic only resolves the symlink, which may not always work, e.g. what if the php binary is being executed through a wrapper like this?


#!/bin/sh
. /path/to/setenv.sh
exec /path/to/php.bin “$@”




(Where php.bin is the binary file and setenv.sh a script with sets environment variables - Wrappers like these are heavily used in Bitnami installations.)

How I did it

Before Flow compares which PHP binary is being used (and which it is supposedly configured to use), we run a PHP exec to print PHP_BINARY.

Then, we store the result and if no errors were thrown, use this as the detected PHP binary path to compare with. If any errors were detected (via the “exec” exit code), we use the original logic that resolves any symlink it’s pointing to.

If it matches the existing one, it means everything went great, if not an error will be thrown like before.

How to verify it


	A correct PHP wrapper pointing to the PHP binary (e.g. php.bin) is allowed for being used for CLI subrequests (method ensureCLISubrequestsUseCurrentlyRunningPhpBinary).


	An invalid PHP wrapper fails when being used for CLI subrequests (method ensureCLISubrequestsUseCurrentlyRunningPhpBinary).




Checklist


	[x] Code follows the PSR-2 coding style - Checked


	[x] Tests have been created, run and adjusted as needed - Couldn’t find any tests for this part


	[x] The PR is created against the [lowest maintained branch](https://www.neos.io/features/release-roadmap.html) - Using 4.3 branch





	Packages: Flow







TASK: Update documentation about AbstractConditionViewHelper. [https://github.com/neos/flow-development-collection/pull/1677]

I tried to create a custom IfViewHelper by extending the AbstractConditionViewHelper and noticed that it was still mentioning to overwrite the render function.
However the render function is not called but rather the evaluateCondition function must be overwritten.
I’ve basically taken the documentation from the Neos docs and copied it here and made some adjustments.

Let me know if this is ok or not (but current state of the documentation is not correct so it should be changed).

Fluid 2.6 introduced another change to the AbstractConditionViewHelper that can be found here: https://github.com/TYPO3/Fluid/commit/a67b31f9e6ecb015d0f47892fce46cf64110fd15 [https://github.com/neos/flow-development-collection/commit/a67b31f9e6ecb015d0f47892fce46cf64110fd15]

With Fluid 3.0 the evaluateCondition function won’t be used anymore - should be kept in mind.

Thanks,
David


	Packages: Flow







BUGFIX: Omit sessionless tokens from session [https://github.com/neos/flow-development-collection/pull/1663]

Without this fix, all security tokens ? including those which are
implementations of SessionlessTokenInterface ? are serialized and
added to the current session. This is a problem for sessionless
tokens, which need to be updated on every request on not just once
per session.

Backport of #1662
Fixes: #1666


	Packages: Flow







TASK: Loosen typo3 fluid dependency [https://github.com/neos/flow-development-collection/pull/1638]

This allows to install any version of TYPO3 Fluid >= 2.1.3, < 2.5.0 instead of the previously limiting to ~2.1.3
Since Flow 5.0+ requires TYPO3 Fluid 2.5.x, this is consistent.


	Packages: FluidAdaptor







TASK: Safelist branches for travis builds [https://github.com/neos/flow-development-collection/pull/1660]

This prevents builds from running doubly on branches created on this repository for PRs, e.g. through the StyleCI bot or by github inline PRs.

See https://docs.travis-ci.com/user/customizing-the-build/#safelisting-or-blocklisting-branches


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.10...5.1.11]







          

      

      

    

  

    
      
          
            
  
5.1.10 (2019-06-17) [https://github.com/neos/flow-development-collection/releases/tag/5.1.10]


Overview of merged pull requests


BUGFIX: Remove exception import breaking compile step [https://github.com/neos/flow-development-collection/pull/1624]

See https://github.com/neos/flow-development-collection/pull/1391 and
the comment https://github.com/neos/flow-development-collection/pull/1391#issuecomment-502635553


	Packages: Flow









Detailed log [https://github.com/neos/flow-development-collection/compare/5.1.9...5.1.10]







          

      

      

    

  

    
      
          
            
  
5.1.1 (2018-08-30) [https://github.com/neos/flow-development-collection/releases/tag/5.1.1]


Overview of merged pull requests


TASK: Speed up lookups in IdentityRoutePart [https://github.com/neos/flow-development-collection/pull/1377]

This adds a second index to the database table in which the
ObjectPathMapping instances are stored. It speeds up find operations
for which the existing primary key does not help.

With enough data (250k entries for ObjectPathMapping) this speeds up
page delivery by about 60%.


	Packages: Flow







FEATURE: `MultiBackend` to ensure operation on cache failure [https://github.com/neos/flow-development-collection/pull/1321]

Introduces the MultiBackend and TaggableMultiBackend which
both can hold multiple backends to be used in order while catching
errors. This ensures operation of applications even if cache
backends are down or inaccessible. It will operate just like the
NullBackend in case no working backends are left.


	Packages: Flow







TASK: Tweak docblocks in Neos.Cache classes [https://github.com/neos/flow-development-collection/pull/1376]

Non-functional fixes to docblocks, fixing a few typos, adding a few
@throws annotations and doing some cleanup here and there.


	Packages: Cache Flow







TASK: Document SimpleFileBackend in Flow manual [https://github.com/neos/flow-development-collection/pull/1373]


	Packages: Flow







BUGFIX: Only add type hint if not already present [https://github.com/neos/flow-development-collection/pull/1370]

The code migration has to respect type hints already present. Otherwise there would be a illegal duplicate type hint.


	Packages: Files Flow







FEATURE: Allow specifying validation groups for Collection and Entity validators [https://github.com/neos/flow-development-collection/pull/1275]

This makes it possible to explicitly specify a Collection or GenericObject type validator on according properties in order to override the options, like validation groups. This is useful for example, when you want to prevent a collection of entities or a whole model to be validated in some validation groups. Previously, you would have had to exclude all the properties of the related entities via according validate annotations with specified validation groups.

Resolves #1008


	Packages: Eel Flow FluidAdaptor Kickstarter







BUGFIX: Fix the replacement pattern in updatemediatypes script [https://github.com/neos/flow-development-collection/pull/1371]

The pattern for the extensionToMediaType array was wrong since #697
Also, this has updated the MediaTypes with the current version from apache.

Related to #1364


	Packages: MediaTypes







!!!BUGFIX: Cyclic validator calls don’t lose previous results [https://github.com/neos/flow-development-collection/pull/1369]

This change uses a stack inside Validators to store results of previous
calls, so that results are not lost when a validator is called in a cycle.
This may happen for any Object or Collection validators, since the Validator
instances chain is built per class and hence cyclic relations (A -> * -> A)
may lead to incorrect validation results otherwise.

Note: This bugfix is only breaking if you implemented your own Validator, extending GenericObjectValidator or CollectionValidator, overriding the validate() method and setting $this->result inside. In that case you are required to change the code to make use of pushResult()/popResult() like it is done inside AbstractValidator::validate().
This is an exception to the otherwise semantic versioning we strive for. It was decided because the breaking only happens in cases that would otherwise potentially be affected by the buggy behaviour of validation that could lead to invalid data entering the system.

In general, you are advised to create own Validators only by implementing the isValid() method instead of overriding the validate() method.


	Packages: Flow







FEATURE: Logger backend to write the log in JSON format [https://github.com/neos/flow-development-collection/pull/1343]

This logger writes the log message as JSON which is easy parsable for log processing
but also readable.


	Packages: Log







TASK: Deprecating non PSR-7 methods [https://github.com/neos/flow-development-collection/pull/1366]


	Packages: Flow







FEATURE: base64 en-/decoding via Fusion [https://github.com/neos/flow-development-collection/pull/1327]

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did
An Eel-Helper which uses PHP functions to encode and decode a data-string


	Packages: Eel







Change uppercase true and false to lowercase in php [https://github.com/neos/flow-development-collection/pull/1334]

As we changed this convention some time ago we should reflect this in our code :)


	Packages: Eel







TASK: Throw a helpful exception when enctype is not set correctly for uploads [https://github.com/neos/flow-development-collection/pull/1349]

This change will throw an Exception when the Form Upload ViewHelper is used, but the according Form does not specify an enc-type of “multipart/form-data”, which is easily forgotten and leads to non-working forms.

Resolves #545


	Packages: FluidAdaptor







Correct `FLOW3` reference to `Flow` [https://github.com/neos/flow-development-collection/pull/1368]

A last reference to FLOW3 was present in the Validation chapter. This change updates the document to use Flow.

Did a search through the Documentation folder and found no other references to FLOW3


	Packages: Flow







TASK: Tweak Flow documentation and Release Notes [https://github.com/neos/flow-development-collection/pull/1367]


	Reverse order of ChangeLogs and Release Notes so that the latest
appear on top


	Add missing “PHP” to 5.0 Release Notes


	Fix reStructuredText errors


	Packages: Flow







TASK: Lower severity of no route matched log message [https://github.com/neos/flow-development-collection/pull/1365]

I feel that was discussed before.
We just moved a big project (from wordpress) to Neos and the system log is flooded with thousands of route not matching log messages.
Do we really need them on “Notice” level so that they get logged on production servers?


	Packages: Flow







BUGFIX: Do not remove leading slashes from base path [https://github.com/neos/flow-development-collection/pull/1363]

Retargeted to Flow 4.3. For discussion see #1341 .


	Packages: Files Flow







BUGFIX: Use same instance for injecting Doctrine ObjectManager and EntityManagerInterface [https://github.com/neos/flow-development-collection/pull/1362]

This fixes the b/c break introduced with the deprecation of the ObjectManager. The fix can be removed with Flow 6.0

Fixes #1345


	Packages: Flow







BUGFIX: Fix wrong namespace for DocTools settings [https://github.com/neos/flow-development-collection/pull/1351]


	Packages: Flow







TASK: Remove doesNotPerformAssertions from a test [https://github.com/neos/flow-development-collection/pull/1360]

… because the test does in fact assert something. So PhpUnit complained:

This test is annotated with “@doesNotPerformAssertions” but performed 1 assertions


	Packages: Flow







BUGFIX: Add ext-xml as composer dependency [https://github.com/neos/flow-development-collection/pull/1357]

Fixes #1356




BUGFIX: Correctly build sub process command arguments [https://github.com/neos/flow-development-collection/pull/1355]

While building sub commands via Scripts::buildSubprocessCommand
the arguments are not build in a syntax that is sensible for parsing
by Flow later. Specifically an argument is build like this:


‘–argumentName’ ‘argumentValue’




The missing equals sign (=) makes this problematic to parse if the
value contains an equal sign itself as that will then be identified
as separator between argument name and value. With this change those
arguments are now build like this:


‘–argumentName’=’argumentValue’





	Packages: Flow







BUGFIX: Fix call of extractLegacyDataFromContext and method name [https://github.com/neos/flow-development-collection/pull/1342]


	Packages: Log







Update symfony/console requirement to ~4.1.1 [https://github.com/neos/flow-development-collection/pull/1335]

Updates the requirements on [symfony/console](https://github.com/symfony/console) to permit the latest version.
<details>
<summary>Changelog</summary>

Sourced from [symfony/console’s changelog](https://github.com/symfony/console/blob/master/CHANGELOG.md).

> CHANGELOG
> =========
>
> 4.1.0
> —–
>
>  * added option to run suggested command if command is not found and only 1 alternative is available
>  * added option to modify console output and print multiple modifiable sections
>  * added support for iterable messages in output write and writeln methods
>
> 4.0.0
> —–
>
>  * OutputFormatter throws an exception when unknown options are used
>  * removed QuestionHelper::setInputStream()/getInputStream()
>  * removed Application::getTerminalWidth()/getTerminalHeight() and
>   Application::setTerminalDimensions()/getTerminalDimensions()
> * removed ConsoleExceptionEvent
> * removed ConsoleEvents::EXCEPTION
>
> 3.4.0
> —–
>
>  * added SHELL_VERBOSITY env var to control verbosity
>  * added CommandLoaderInterface, FactoryCommandLoader and PSR-11
>    ContainerCommandLoader for commands lazy-loading
>  * added a case-insensitive command name matching fallback
>  * added static Command::$defaultName/getDefaultName(), allowing for
>    commands to be registered at compile time in the application command loader.
>    Setting the $defaultName property avoids the need for filling the command
>    attribute on the console.command tag when using AddConsoleCommandPass.
>
> 3.3.0
> —–
>
> * added ExceptionListener
> * added AddConsoleCommandPass (originally in FrameworkBundle)
> * [BC BREAK] Input::getOption() no longer returns the default value for options
>   with value optional explicitly passed empty
> * added console.error event to catch exceptions thrown by other listeners
> * deprecated console.exception event in favor of console.error
> * added ability to handle CommandNotFoundException through the
>  console.error event
> * deprecated default validation in SymfonyQuestionHelper::ask
>
> 3.2.0
> ——
>
> * added setInputs() method to CommandTester for ease testing of commands expecting inputs
> * added setStream() and getStream() methods to Input (implement StreamableInputInterface)
></table> … (truncated)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/symfony/console/commits/v4.1.1)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot merge will merge this PR after your CI passes on it
- @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
- @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
- @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
- @dependabot badge me will comment on this PR with code to add a “Dependabot enabled” badge to your readme

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Pull request limits (per update run and/or open at any time)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>




Update doctrine/migrations requirement to ~1.8.1 [https://github.com/neos/flow-development-collection/pull/1325]

Updates the requirements on [doctrine/migrations](https://github.com/doctrine/migrations) to permit the latest version.
<details>
<summary>Release notes</summary>

Sourced from [doctrine/migrations’s releases](https://github.com/doctrine/migrations/releases).

> ## 1.8.1
>
> NOTE The v1.8.0 tag was accidentally created from master instead of the 1.8 branch. Sorry for the confusion.
>
> - Total issues resolved: 1
> - Total pull requests resolved: 1
> - Total contributors: 1
>
> ### Improvement
>
>  - [690: Introduce Doctrine\DBAL\Migrations\AbstractMigration deprecation.](https://github-redirect.dependabot.com/doctrine/migrations/pull/690) thanks to [jwage](https://github.com/jwage)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/doctrine/migrations/commits/v1.8.1)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
- @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
- @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Pull request limits (per update run and/or open at any time)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>


	Packages: Flow







TASK: Change uppercase true and false to lowercase in yaml [https://github.com/neos/flow-development-collection/pull/1333]

As we changed this convention some time ago we should reflect this in our code :)


	Packages: Flow







BUGFIX: Fix distinction between PSR and legacy loggers in the LoggerFactory [https://github.com/neos/flow-development-collection/pull/1312]

As discussed[1] - set third parameter to “true” to do the correct comparison.
If this parameter is set to true, a class name string as “object” is allowed.

[1] https://neos-project.slack.com/archives/C04PYL8H3/p1526288487000147


	Packages: Flow







Improve performance of ResourceManager::getResourceBySha1() [https://github.com/neos/flow-development-collection/pull/1331]

This adds an index to the PersistentResource table drastically
improving the performance of ResourceManager::getResourceBySha1()
calls (= public API).




BUGFIX: Adjust has() to phpredis >= 4.0.0 [https://github.com/neos/flow-development-collection/pull/1326]

The exists() method returned TRUE or FALSE in phpredis versions < 4.0.0, now it
returns the number of keys tested that do exist.




TASK: Small boot performance improvements [https://github.com/neos/flow-development-collection/pull/1196]

These changes are meant to defer initializations of low level classes as much
as possible.

ConfigurationManager had some unnecessary code and route configuration
processing was separated out to make the class smaller and better to maintain.

ReflectionService is now build via factory at runtime which means if it’s not
needed it will never do its costly initialisation.

Same for the AuthenticationProviderManager internals.


	Packages: Flow







Update symfony/yaml requirement to ~4.1.0 [https://github.com/neos/flow-development-collection/pull/1318]




TASK: Update production exception page [https://github.com/neos/flow-development-collection/pull/1324]

Simplifies the production exception message to match the current CI more.

![exception](https://user-images.githubusercontent.com/6884391/41510923-766750da-726d-11e8-9998-755de770d453.png)


	Packages: Flow







BUGFIX: Allow to delete “used” resources from a storage [https://github.com/neos/flow-development-collection/pull/1298]

This solves the following case…

Given these settings:



	resource:

	
	collections:

	
	readableFilenames:

	storage: ‘readableFilenameResourcesStorage’
target: ‘readableFilenameResourcesTarget’







	storages:

	
	readableFilenameResourcesStorage:

	storage: ‘Neos\Flow\ResourceManagement\Storage\WritableFileSystemStorage’
storageOptions:


path: ‘%FLOW_PATH_DATA%Persistent/ReadableResources/’










	targets:

	
	readableFilenameResourcesTarget:

	target: ‘Acme\AcmeCom\FilenameFileSystemSymlinkTarget’
targetOptions:


path: ‘%FLOW_PATH_WEB%Files/’
baseUri: ‘Files/’



















I want to “move” a resource from the persistent to the readableFilenames collection. To do this, I get an asset, fetch the resource and import it into the readableFilenames collection. After that the newly imported resource is published, assigned to the asset and then the old resource is deleted. Code would be something like this:


$resource = $asset->getResource();

$importedResource = $resourceCollection->importResource($resource->getStream());
$importedResource->setFilename($resource->getFilename());
$importedResource->setMediaType($resource->getMediaType());
$resourceCollection->getTarget()->publishResource($resource, $resourceCollection);

$asset->setResource($importedResource);
$this->assetRepository->update($asset);

$this->resourceManager->deleteResource($resource);




But this leads to log messages about the storage data not being deleted, because the resource is still being used. Which is not true, or at least not fully correct. The problem at this point: the same resource exists in two collections, but the check only looks at the SHA1 (and filename, partly).

So this change adjusts the checks involved to look at the collection a resource is in, too.


	Packages: Flow







BUGFIX: Allow to delete “used” resources from a storage [https://github.com/neos/flow-development-collection/pull/1315]

This solves the following case…

Given these settings:



	resource:

	
	collections:

	
	readableFilenames:

	storage: ‘readableFilenameResourcesStorage’
target: ‘readableFilenameResourcesTarget’







	storages:

	
	readableFilenameResourcesStorage:

	storage: ‘TYPO3\Flow\Resource\Storage\WritableFileSystemStorage’
storageOptions:


path: ‘%FLOW_PATH_DATA%Persistent/ReadableResources/’










	targets:

	
	readableFilenameResourcesTarget:

	target: ‘Acme\AcmeCom\FilenameFileSystemSymlinkTarget’
targetOptions:


path: ‘%FLOW_PATH_WEB%Files/’
baseUri: ‘Files/’



















I want to “move” a resource from the persistent to the readableFilenames collection. To do this, I get an asset, fetch the resource and import it into the readableFilenames collection. After that the newly imported resource is published, assigned to the asset and then the old resource is deleted. Code would be something like this:


$resource = $asset->getResource();

$importedResource = $resourceCollection->importResource($resource->getStream());
$importedResource->setFilename($resource->getFilename());
$importedResource->setMediaType($resource->getMediaType());
$resourceCollection->getTarget()->publishResource($resource, $resourceCollection);

$asset->setResource($importedResource);
$this->assetRepository->update($asset);

$this->resourceManager->deleteResource($resource);




But this leads to log messages about the storage data not being deleted, because the resource is still being used. Which is not true, or at least not fully correct. The problem at this point: the same resource exists in two collections, but the check only looks at the SHA1 (and filename, partly).

So this change adjusts the checks involved to look at the collection a resource is in, too.




Update doctrine/common requirement to ^2.8.1 [https://github.com/neos/flow-development-collection/pull/1306]

Updates the requirements on [doctrine/common](https://github.com/doctrine/common) to permit the latest version.
<details>
<summary>Release notes</summary>

Sourced from [doctrine/common’s releases](https://github.com/doctrine/common/releases).

> ## v2.8.1
> This release fixes an unintentional BC break that prevented
> passing all the possible available flags to
> the Doctrine\Common\Proxy\AbstractProxyFactory.
>
> Total issues resolved: 2
> - [815: Convert proxy factory auto generate mode to integer](https://github-redirect.dependabot.com/doctrine/common/pull/815) thanks to [dragosprotung](https://github.com/dragosprotung)
> - [816: Convert proxy factory auto generate mode to integer](https://github-redirect.dependabot.com/doctrine/common/pull/816) thanks to [dragosprotung](https://github.com/dragosprotung)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/doctrine/common/commits/v2.8.1)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

Note: This repo was added to Dependabot recently, so you’ll receive a maximum of 5 PRs for your first few update runs. Once an update run creates fewer than 5 PRs we’ll remove that limit.

You can always request more updates by clicking Bump now in your [Dependabot dashboard](https://app.dependabot.com).

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot ignore this [minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use [this|these] label[s] will set the current labels as the default for future PRs for this repo and language

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>

[//]: # (dependabot-start)

—
⚠️  Dependabot is rebasing this PR ⚠️

Sit tight and this PR will be updated for you in a minute. If you make any changes yourself then they’ll take precedence over the rebase (which will be abandoned).

[//]: # (dependabot-end)




Update doctrine/migrations requirement to ~1.7.2 [https://github.com/neos/flow-development-collection/pull/1313]

Updates the requirements on [doctrine/migrations](https://github.com/doctrine/migrations) to permit the latest version.
<details>
<summary>Release notes</summary>

Sourced from [doctrine/migrations’s releases](https://github.com/doctrine/migrations/releases).

> ## 1.7.2
> ### Fixed
>
>   - [656: Update MigrationsVersion to 1.7.2](https://github-redirect.dependabot.com/doctrine/migrations/pull/656) - [jwage](https://github.com/jwage)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/doctrine/migrations/commits/v1.7.2)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

Note: This repo was added to Dependabot recently, so you’ll receive a maximum of 5 PRs for your first few update runs. Once an update run creates fewer than 5 PRs we’ll remove that limit.

You can always request more updates by clicking Bump now in your [Dependabot dashboard](https://app.dependabot.com).

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use (this|these) label[s] will set the current labels as the default for future PRs for this repo and language
- @dependabot use (this|these) reviewer[s] will set the current reviewers as the default for future PRs for this repo and language
- @dependabot use (this|these) assignee[s] will set the current assignees as the default for future PRs for this repo and language

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>




TASK: Don’t set return type for RedisBackend->key() [https://github.com/neos/flow-development-collection/pull/1314]

Fixes #1311


	Packages: Cache







BUGFIX: The Request object should not be mutated after creation [https://github.com/neos/flow-development-collection/pull/1287]

Fixes #1123




FEATURE: Arrow function expressions in Eel [https://github.com/neos/flow-development-collection/pull/1276]

Adds support to parse and evaluate arrow function expressions in Eel.
This is only implemented for the CompilingEelEvaluator, since
expression evaluation need to be deferred in functions.

Arrow function arguments can be specified with or without parentheses.
The body must be an expression and not a block.

Example:


map(items, (x) => x * x)





	Packages: Eel







TASK: Enable test that was skipped due to Doctrine bug [https://github.com/neos/flow-development-collection/pull/1307]


	Packages: Flow







BUGFIX: Remove usage of removed f:base viewhelper from kickstarter [https://github.com/neos/flow-development-collection/pull/1303]

Removes the f:base viewhelper from kickstarted Layout template file since the viewhelper does no longer exist.


	Packages: Flow Kickstarter







BUGFIX: Make $referenceCode nullable in ProductionExceptionHandler [https://github.com/neos/flow-development-collection/pull/1299]

Just a few lines above the reference code may be set to null, and two lines
down the file a check against null is made. So, null is to be tolerated!


	Packages: Flow







BUGFIX: Fix broken cache get/set in RedisBackend [https://github.com/neos/flow-development-collection/pull/1300]

The type hints broke correct detection of hits/misses in the cache
backend.


	Packages: Cache







TASK: Remove dummy assertions from tests [https://github.com/neos/flow-development-collection/pull/1297]

This replaces dummy assertions used to silence PHPUnit warnings with the
use of the @doesNotPerformAssertions annotation.


	Packages: Flow FluidAdaptor









Detailed log [https://github.com/neos/flow-development-collection/compare/5.0.0...5.1.1]







          

      

      

    

  

    
      
          
            
  
5.1.0 (2018-08-29) [https://github.com/neos/flow-development-collection/releases/tag/5.1.0]


Overview of merged pull requests


TASK: Speed up lookups in IdentityRoutePart [https://github.com/neos/flow-development-collection/pull/1377]

This adds a second index to the database table in which the
ObjectPathMapping instances are stored. It speeds up find operations
for which the existing primary key does not help.

With enough data (250k entries for ObjectPathMapping) this speeds up
page delivery by about 60%.


	Packages: Flow







FEATURE: `MultiBackend` to ensure operation on cache failure [https://github.com/neos/flow-development-collection/pull/1321]

Introduces the MultiBackend and TaggableMultiBackend which
both can hold multiple backends to be used in order while catching
errors. This ensures operation of applications even if cache
backends are down or inaccessible. It will operate just like the
NullBackend in case no working backends are left.


	Packages: Flow







TASK: Tweak docblocks in Neos.Cache classes [https://github.com/neos/flow-development-collection/pull/1376]

Non-functional fixes to docblocks, fixing a few typos, adding a few
@throws annotations and doing some cleanup here and there.


	Packages: Cache Flow







TASK: Document SimpleFileBackend in Flow manual [https://github.com/neos/flow-development-collection/pull/1373]


	Packages: Flow







BUGFIX: Only add type hint if not already present [https://github.com/neos/flow-development-collection/pull/1370]

The code migration has to respect type hints already present. Otherwise there would be a illegal duplicate type hint.


	Packages: Files Flow







FEATURE: Allow specifying validation groups for Collection and Entity validators [https://github.com/neos/flow-development-collection/pull/1275]

This makes it possible to explicitly specify a Collection or GenericObject type validator on according properties in order to override the options, like validation groups. This is useful for example, when you want to prevent a collection of entities or a whole model to be validated in some validation groups. Previously, you would have had to exclude all the properties of the related entities via according validate annotations with specified validation groups.

Resolves #1008


	Packages: Eel Flow FluidAdaptor Kickstarter







BUGFIX: Fix the replacement pattern in updatemediatypes script [https://github.com/neos/flow-development-collection/pull/1371]

The pattern for the extensionToMediaType array was wrong since #697
Also, this has updated the MediaTypes with the current version from apache.

Related to #1364


	Packages: MediaTypes







!!!BUGFIX: Cyclic validator calls don’t lose previous results [https://github.com/neos/flow-development-collection/pull/1369]

This change uses a stack inside Validators to store results of previous
calls, so that results are not lost when a validator is called in a cycle.
This may happen for any Object or Collection validators, since the Validator
instances chain is built per class and hence cyclic relations (A -> * -> A)
may lead to incorrect validation results otherwise.

Note: This bugfix is only breaking if you implemented your own Validator, extending GenericObjectValidator or CollectionValidator, overriding the validate() method and setting $this->result inside. In that case you are required to change the code to make use of pushResult()/popResult() like it is done inside AbstractValidator::validate().
This is an exception to the otherwise semantic versioning we strive for. It was decided because the breaking only happens in cases that would otherwise potentially be affected by the buggy behaviour of validation that could lead to invalid data entering the system.

In general, you are advised to create own Validators only by implementing the isValid() method instead of overriding the validate() method.


	Packages: Flow







FEATURE: Logger backend to write the log in JSON format [https://github.com/neos/flow-development-collection/pull/1343]

This logger writes the log message as JSON which is easy parsable for log processing
but also readable.


	Packages: Log







TASK: Deprecating non PSR-7 methods [https://github.com/neos/flow-development-collection/pull/1366]


	Packages: Flow







FEATURE: base64 en-/decoding via Fusion [https://github.com/neos/flow-development-collection/pull/1327]

<!–
Thanks for your contribution, we appreciate it!

Please read through our pull request guidelines, there are some interesting things there:
https://discuss.neos.io/t/creating-a-pull-request/506

And one more thing… Don’t forget about the tests!
–>

What I did
An Eel-Helper which uses PHP functions to encode and decode a data-string


	Packages: Eel







Change uppercase true and false to lowercase in php [https://github.com/neos/flow-development-collection/pull/1334]

As we changed this convention some time ago we should reflect this in our code :)


	Packages: Eel







TASK: Throw a helpful exception when enctype is not set correctly for uploads [https://github.com/neos/flow-development-collection/pull/1349]

This change will throw an Exception when the Form Upload ViewHelper is used, but the according Form does not specify an enc-type of “multipart/form-data”, which is easily forgotten and leads to non-working forms.

Resolves #545


	Packages: FluidAdaptor







Correct `FLOW3` reference to `Flow` [https://github.com/neos/flow-development-collection/pull/1368]

A last reference to FLOW3 was present in the Validation chapter. This change updates the document to use Flow.

Did a search through the Documentation folder and found no other references to FLOW3


	Packages: Flow







TASK: Tweak Flow documentation and Release Notes [https://github.com/neos/flow-development-collection/pull/1367]


	Reverse order of ChangeLogs and Release Notes so that the latest
appear on top


	Add missing “PHP” to 5.0 Release Notes


	Fix reStructuredText errors


	Packages: Flow







TASK: Lower severity of no route matched log message [https://github.com/neos/flow-development-collection/pull/1365]

I feel that was discussed before.
We just moved a big project (from wordpress) to Neos and the system log is flooded with thousands of route not matching log messages.
Do we really need them on “Notice” level so that they get logged on production servers?


	Packages: Flow







BUGFIX: Do not remove leading slashes from base path [https://github.com/neos/flow-development-collection/pull/1363]

Retargeted to Flow 4.3. For discussion see #1341 .


	Packages: Files Flow







BUGFIX: Use same instance for injecting Doctrine ObjectManager and EntityManagerInterface [https://github.com/neos/flow-development-collection/pull/1362]

This fixes the b/c break introduced with the deprecation of the ObjectManager. The fix can be removed with Flow 6.0

Fixes #1345


	Packages: Flow







BUGFIX: Fix wrong namespace for DocTools settings [https://github.com/neos/flow-development-collection/pull/1351]


	Packages: Flow







TASK: Remove doesNotPerformAssertions from a test [https://github.com/neos/flow-development-collection/pull/1360]

… because the test does in fact assert something. So PhpUnit complained:

This test is annotated with “@doesNotPerformAssertions” but performed 1 assertions


	Packages: Flow







BUGFIX: Add ext-xml as composer dependency [https://github.com/neos/flow-development-collection/pull/1357]

Fixes #1356




BUGFIX: Correctly build sub process command arguments [https://github.com/neos/flow-development-collection/pull/1355]

While building sub commands via Scripts::buildSubprocessCommand
the arguments are not build in a syntax that is sensible for parsing
by Flow later. Specifically an argument is build like this:


‘–argumentName’ ‘argumentValue’




The missing equals sign (=) makes this problematic to parse if the
value contains an equal sign itself as that will then be identified
as separator between argument name and value. With this change those
arguments are now build like this:


‘–argumentName’=’argumentValue’





	Packages: Flow







BUGFIX: Fix call of extractLegacyDataFromContext and method name [https://github.com/neos/flow-development-collection/pull/1342]


	Packages: Log







Update symfony/console requirement to ~4.1.1 [https://github.com/neos/flow-development-collection/pull/1335]

Updates the requirements on [symfony/console](https://github.com/symfony/console) to permit the latest version.
<details>
<summary>Changelog</summary>

Sourced from [symfony/console’s changelog](https://github.com/symfony/console/blob/master/CHANGELOG.md).

> CHANGELOG
> =========
>
> 4.1.0
> —–
>
>  * added option to run suggested command if command is not found and only 1 alternative is available
>  * added option to modify console output and print multiple modifiable sections
>  * added support for iterable messages in output write and writeln methods
>
> 4.0.0
> —–
>
>  * OutputFormatter throws an exception when unknown options are used
>  * removed QuestionHelper::setInputStream()/getInputStream()
>  * removed Application::getTerminalWidth()/getTerminalHeight() and
>   Application::setTerminalDimensions()/getTerminalDimensions()
> * removed ConsoleExceptionEvent
> * removed ConsoleEvents::EXCEPTION
>
> 3.4.0
> —–
>
>  * added SHELL_VERBOSITY env var to control verbosity
>  * added CommandLoaderInterface, FactoryCommandLoader and PSR-11
>    ContainerCommandLoader for commands lazy-loading
>  * added a case-insensitive command name matching fallback
>  * added static Command::$defaultName/getDefaultName(), allowing for
>    commands to be registered at compile time in the application command loader.
>    Setting the $defaultName property avoids the need for filling the command
>    attribute on the console.command tag when using AddConsoleCommandPass.
>
> 3.3.0
> —–
>
> * added ExceptionListener
> * added AddConsoleCommandPass (originally in FrameworkBundle)
> * [BC BREAK] Input::getOption() no longer returns the default value for options
>   with value optional explicitly passed empty
> * added console.error event to catch exceptions thrown by other listeners
> * deprecated console.exception event in favor of console.error
> * added ability to handle CommandNotFoundException through the
>  console.error event
> * deprecated default validation in SymfonyQuestionHelper::ask
>
> 3.2.0
> ——
>
> * added setInputs() method to CommandTester for ease testing of commands expecting inputs
> * added setStream() and getStream() methods to Input (implement StreamableInputInterface)
></table> … (truncated)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/symfony/console/commits/v4.1.1)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot merge will merge this PR after your CI passes on it
- @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
- @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
- @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
- @dependabot badge me will comment on this PR with code to add a “Dependabot enabled” badge to your readme

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Pull request limits (per update run and/or open at any time)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>




Update doctrine/migrations requirement to ~1.8.1 [https://github.com/neos/flow-development-collection/pull/1325]

Updates the requirements on [doctrine/migrations](https://github.com/doctrine/migrations) to permit the latest version.
<details>
<summary>Release notes</summary>

Sourced from [doctrine/migrations’s releases](https://github.com/doctrine/migrations/releases).

> ## 1.8.1
>
> NOTE The v1.8.0 tag was accidentally created from master instead of the 1.8 branch. Sorry for the confusion.
>
> - Total issues resolved: 1
> - Total pull requests resolved: 1
> - Total contributors: 1
>
> ### Improvement
>
>  - [690: Introduce Doctrine\DBAL\Migrations\AbstractMigration deprecation.](https://github-redirect.dependabot.com/doctrine/migrations/pull/690) thanks to [jwage](https://github.com/jwage)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/doctrine/migrations/commits/v1.8.1)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
- @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
- @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Pull request limits (per update run and/or open at any time)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>


	Packages: Flow







TASK: Change uppercase true and false to lowercase in yaml [https://github.com/neos/flow-development-collection/pull/1333]

As we changed this convention some time ago we should reflect this in our code :)


	Packages: Flow







BUGFIX: Fix distinction between PSR and legacy loggers in the LoggerFactory [https://github.com/neos/flow-development-collection/pull/1312]

As discussed[1] - set third parameter to “true” to do the correct comparison.
If this parameter is set to true, a class name string as “object” is allowed.

[1] https://neos-project.slack.com/archives/C04PYL8H3/p1526288487000147


	Packages: Flow







Improve performance of ResourceManager::getResourceBySha1() [https://github.com/neos/flow-development-collection/pull/1331]

This adds an index to the PersistentResource table drastically
improving the performance of ResourceManager::getResourceBySha1()
calls (= public API).




BUGFIX: Adjust has() to phpredis >= 4.0.0 [https://github.com/neos/flow-development-collection/pull/1326]

The exists() method returned TRUE or FALSE in phpredis versions < 4.0.0, now it
returns the number of keys tested that do exist.




TASK: Small boot performance improvements [https://github.com/neos/flow-development-collection/pull/1196]

These changes are meant to defer initializations of low level classes as much
as possible.

ConfigurationManager had some unnecessary code and route configuration
processing was separated out to make the class smaller and better to maintain.

ReflectionService is now build via factory at runtime which means if it’s not
needed it will never do its costly initialisation.

Same for the AuthenticationProviderManager internals.


	Packages: Flow







Update symfony/yaml requirement to ~4.1.0 [https://github.com/neos/flow-development-collection/pull/1318]




TASK: Update production exception page [https://github.com/neos/flow-development-collection/pull/1324]

Simplifies the production exception message to match the current CI more.

![exception](https://user-images.githubusercontent.com/6884391/41510923-766750da-726d-11e8-9998-755de770d453.png)


	Packages: Flow







BUGFIX: Allow to delete “used” resources from a storage [https://github.com/neos/flow-development-collection/pull/1298]

This solves the following case…

Given these settings:



	resource:

	
	collections:

	
	readableFilenames:

	storage: ‘readableFilenameResourcesStorage’
target: ‘readableFilenameResourcesTarget’







	storages:

	
	readableFilenameResourcesStorage:

	storage: ‘Neos\Flow\ResourceManagement\Storage\WritableFileSystemStorage’
storageOptions:


path: ‘%FLOW_PATH_DATA%Persistent/ReadableResources/’










	targets:

	
	readableFilenameResourcesTarget:

	target: ‘Acme\AcmeCom\FilenameFileSystemSymlinkTarget’
targetOptions:


path: ‘%FLOW_PATH_WEB%Files/’
baseUri: ‘Files/’



















I want to “move” a resource from the persistent to the readableFilenames collection. To do this, I get an asset, fetch the resource and import it into the readableFilenames collection. After that the newly imported resource is published, assigned to the asset and then the old resource is deleted. Code would be something like this:


$resource = $asset->getResource();

$importedResource = $resourceCollection->importResource($resource->getStream());
$importedResource->setFilename($resource->getFilename());
$importedResource->setMediaType($resource->getMediaType());
$resourceCollection->getTarget()->publishResource($resource, $resourceCollection);

$asset->setResource($importedResource);
$this->assetRepository->update($asset);

$this->resourceManager->deleteResource($resource);




But this leads to log messages about the storage data not being deleted, because the resource is still being used. Which is not true, or at least not fully correct. The problem at this point: the same resource exists in two collections, but the check only looks at the SHA1 (and filename, partly).

So this change adjusts the checks involved to look at the collection a resource is in, too.


	Packages: Flow







BUGFIX: Allow to delete “used” resources from a storage [https://github.com/neos/flow-development-collection/pull/1315]

This solves the following case…

Given these settings:



	resource:

	
	collections:

	
	readableFilenames:

	storage: ‘readableFilenameResourcesStorage’
target: ‘readableFilenameResourcesTarget’







	storages:

	
	readableFilenameResourcesStorage:

	storage: ‘TYPO3\Flow\Resource\Storage\WritableFileSystemStorage’
storageOptions:


path: ‘%FLOW_PATH_DATA%Persistent/ReadableResources/’










	targets:

	
	readableFilenameResourcesTarget:

	target: ‘Acme\AcmeCom\FilenameFileSystemSymlinkTarget’
targetOptions:


path: ‘%FLOW_PATH_WEB%Files/’
baseUri: ‘Files/’



















I want to “move” a resource from the persistent to the readableFilenames collection. To do this, I get an asset, fetch the resource and import it into the readableFilenames collection. After that the newly imported resource is published, assigned to the asset and then the old resource is deleted. Code would be something like this:


$resource = $asset->getResource();

$importedResource = $resourceCollection->importResource($resource->getStream());
$importedResource->setFilename($resource->getFilename());
$importedResource->setMediaType($resource->getMediaType());
$resourceCollection->getTarget()->publishResource($resource, $resourceCollection);

$asset->setResource($importedResource);
$this->assetRepository->update($asset);

$this->resourceManager->deleteResource($resource);




But this leads to log messages about the storage data not being deleted, because the resource is still being used. Which is not true, or at least not fully correct. The problem at this point: the same resource exists in two collections, but the check only looks at the SHA1 (and filename, partly).

So this change adjusts the checks involved to look at the collection a resource is in, too.




Update doctrine/common requirement to ^2.8.1 [https://github.com/neos/flow-development-collection/pull/1306]

Updates the requirements on [doctrine/common](https://github.com/doctrine/common) to permit the latest version.
<details>
<summary>Release notes</summary>

Sourced from [doctrine/common’s releases](https://github.com/doctrine/common/releases).

> ## v2.8.1
> This release fixes an unintentional BC break that prevented
> passing all the possible available flags to
> the Doctrine\Common\Proxy\AbstractProxyFactory.
>
> Total issues resolved: 2
> - [815: Convert proxy factory auto generate mode to integer](https://github-redirect.dependabot.com/doctrine/common/pull/815) thanks to [dragosprotung](https://github.com/dragosprotung)
> - [816: Convert proxy factory auto generate mode to integer](https://github-redirect.dependabot.com/doctrine/common/pull/816) thanks to [dragosprotung](https://github.com/dragosprotung)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/doctrine/common/commits/v2.8.1)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

Note: This repo was added to Dependabot recently, so you’ll receive a maximum of 5 PRs for your first few update runs. Once an update run creates fewer than 5 PRs we’ll remove that limit.

You can always request more updates by clicking Bump now in your [Dependabot dashboard](https://app.dependabot.com).

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot ignore this [minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use [this|these] label[s] will set the current labels as the default for future PRs for this repo and language

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>

[//]: # (dependabot-start)

—
⚠️  Dependabot is rebasing this PR ⚠️

Sit tight and this PR will be updated for you in a minute. If you make any changes yourself then they’ll take precedence over the rebase (which will be abandoned).

[//]: # (dependabot-end)




Update doctrine/migrations requirement to ~1.7.2 [https://github.com/neos/flow-development-collection/pull/1313]

Updates the requirements on [doctrine/migrations](https://github.com/doctrine/migrations) to permit the latest version.
<details>
<summary>Release notes</summary>

Sourced from [doctrine/migrations’s releases](https://github.com/doctrine/migrations/releases).

> ## 1.7.2
> ### Fixed
>
>   - [656: Update MigrationsVersion to 1.7.2](https://github-redirect.dependabot.com/doctrine/migrations/pull/656) - [jwage](https://github.com/jwage)
</details>
<details>
<summary>Commits</summary>


	See full diff in [compare view](https://github.com/doctrine/migrations/commits/v1.7.2)




</details>
<br />

Dependabot will resolve any conflicts with this PR as long as you don’t alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.

—

Note: This repo was added to Dependabot recently, so you’ll receive a maximum of 5 PRs for your first few update runs. Once an update run creates fewer than 5 PRs we’ll remove that limit.

You can always request more updates by clicking Bump now in your [Dependabot dashboard](https://app.dependabot.com).

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- @dependabot rebase will rebase this PR
- @dependabot ignore this [patch|minor|major] version will close this PR and stop Dependabot creating any more for this minor/major version (unless you reopen the PR or upgrade to it yourself)
- @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
- @dependabot use (this|these) label[s] will set the current labels as the default for future PRs for this repo and language
- @dependabot use (this|these) reviewer[s] will set the current reviewers as the default for future PRs for this repo and language
- @dependabot use (this|these) assignee[s] will set the current assignees as the default for future PRs for this repo and language

Additionally, you can set the following in your Dependabot [dashboard](https://app.dependabot.com):
- Update frequency (including time of day and day of week)
- Automerge options (never/patch/minor, and dev/runtime dependencies)
- Out-of-range updates (receive only lockfile updates, if desired)
- Security updates (receive only security updates, if desired)

Finally, you can contact us by mentioning @dependabot.

</details>




TASK: Don’t set return type for RedisBackend->key() [https://github.com/neos/flow-development-collection/pull/1314]

Fixes #1311


	Packages: Cache







BUGFIX: The Request object should not be mutated after creation [https://github.com/neos/flow-development-collection/pull/1287]

Fixes #1123




FEATURE: Arrow function expressions in Eel [https://github.com/neos/flow-development-collection/pull/1276]

Adds support to parse and evaluate arrow function expressions in Eel.
This is only implemented for the CompilingEelEvaluator, since
expression evaluation need to be deferred in functions.

Arrow function arguments can be specified with or without parentheses.
The body must be an expression and not a block.

Example:


map(items, (x) => x * x)





	Packages: Eel







TASK: Enable test that was skipped due to Doctrine bug [https://github.com/neos/flow-development-collection/pull/1307]


	Packages: Flow







BUGFIX: Remove usage of removed f:base viewhelper from kickstarter [https://github.com/neos/flow-development-collection/pull/1303]

Removes the f:base viewhelper from kickstarted Layout template file since the viewhelper does no longer exist.


	Packages: Flow Kickstarter







BUGFIX: Make $referenceCode nullable in ProductionExceptionHandler [https://github.com/neos/flow-development-collection/pull/1299]

Just a few lines above the reference code may be set to null, and two lines
down the file a check against null is made. So, null is to be tolerated!


	Packages: Flow







BUGFIX: Fix broken cache get/set in RedisBackend [https://github.com/neos/flow-development-collection/pull/1300]

The type hints broke correct detection of hits/misses in the cache
backend.


	Packages: Cache







TASK: Remove dummy assertions from tests [https://github.com/neos/flow-development-collection/pull/1297]

This replaces dummy assertions used to silence PHPUnit warnings with the
use of the @doesNotPerformAssertions annotation.


	Packages: Flow FluidAdaptor









Detailed log [https://github.com/neos/flow-development-collection/compare/5.0.0...5.1.0]







          

      

      

    

  

    
      
          
            
  
Contributors

The following is a list of contributors generated from version control
information (see below). As such it is neither claiming to be complete nor is the
ordering anything but alphabetic.


	Adrian Föder


	Aftab Naveed


	Alexander Berl


	Alexander Schnitzler


	Alexander Stehlik


	Andreas Förthner


	Andreas Wolf


	Andy Grunwald


	Aske Ertmann


	Bastian Heist


	Bastian Waidelich


	Benno Weinzierl


	Berit Jensen


	Bernhard Fischer


	Carsten Bleicker


	Cedric Ziel


	Christian Jul Jensen


	Christian Kuhn


	Christian Müller


	Christopher Hlubek


	Dan Untenzu


	Daniel Lienert


	Dmitri Pisarev


	Dominique Feyer


	Felix Oertel


	Ferdinand Kuhl


	Franz Kugelmann


	Georg Ringer


	Helmut Hummel


	Henrik Møller Rasmussen


	Ingo Pfennigstorf


	Irene Höppner


	Jacob Floyd


	Jan-Erik Revsbech


	Jochen Rau


	Johannes Künsebeck


	Jonas Renggli


	Julian Kleinhans


	Julian Wachholz


	Karol Gusak


	Karsten Dambekalns


	Kerstin Huppenbauer


	Lars Peipmann


	Laurent Cherpit


	Lienhart Woitok


	Marc Neuhaus


	Marco Huber


	Markus Goldbeck


	Markus Günther


	Martin Brüggemann


	Martin Ficzel


	Martin Helmich


	Mattias Nilsson


	Michael Gerdemann


	Michael Klapper


	Michael Sauter


	Oliver Hader


	Oliver Eglseder


	Pankaj Lele


	Patrick Pussar


	Philipp Maier


	Rafael Kähm


	Rens Admiraal


	Robert Lemke


	Roland Waldner


	Ryan J. Peterson


	Sascha Egerer


	Sascha Nowak


	Sebastian Helzle


	Sebastian Heuer


	Sebastian Kurfürst


	Simon Schaufelberger


	Simon Schick


	Soeren Rohweder


	Soren Malling


	Stefan Neufeind


	Steffen Ritter


	Stephan Schuler


	Thomas Hempel


	Thomas Layh


	Tim Eilers


	Tim Kandel


	Tim Spiekerkötter


	Tobias Liebig


	Tolleiv Nietsch


	Tymoteusz Motylewski


	Wouter Wolters


	Xavier Perseguers


	Zach Davis




The list has been generated with some manual tweaking of the output of this:

rm contributors.txt
for REPO in `ls` ; do
  cd $REPO
  git log --format='%aN' >> ../contributors.txt
  cd ..
done
sort -u < contributors.txt > contributors-sorted.txt
mv contributors-sorted.txt contributors.txt









          

      

      

    

  

    
      
          
            
  
Publications Style Guide



	About this Guide

	Style and Usage

	Font conventions









          

      

      

    

  

    
      
          
            
  
About this Guide

The Publications Style Guide provides editorial guidelines for text in all kinds
of publications, technical documentation, and the software user interface of applications
issued by the Neos Project.

Anybody writing text for the Neos Project is encouraged to use this document as a guide
to writing style, usage and specific terminology.


Standard Editorial Resources

In general, follow the style and usage rules in:


	Merriam-Webster’s Collegiate Dictionary [http://www.merriam-webster.com/] (or other editions by Merriam-Webster)


	The Chicago Manual of Style [http://www.chicagomanualofstyle.org/]










          

      

      

    

  

    
      
          
            
  
Style and Usage

This chapter provides guidelines on writing style and usage. The intent of these
guidelines is to help maintain a consistent voice in publications of the Neos Project and
in the user interface.


File Types

Use all caps for abbreviations of file types:

a PHP file, a YAML file, the RST file





Filename extensions, which indicate the file type, should be in lowercase:

.php, .jpg, .css








Abbreviations and Acronyms

An acronym is a pronounceable word formed from the initial letter or letters of major
parts of a compound term. An abbreviation is usually formed in the same way but is not
pronounced as a word.

Abbreviations are often lowercase or a mix of lowercase and uppercase. Acronyms are
almost always all caps, regardless of the capitalization style of the spelled-out form.


	Latin: Avoid using Latin abbreviations.



	Correct: for example, and others, and so on, and that is, or equivalent phrases


	Incorrect: e.g. (for example), et al. (and others), etc.  (and so on), i.e. (that is)














Above

You can use above to describe an element or section of an onscreen document
that cannot be paged through (such as a single webpage).

Don’t use above in print documents; instead, use one of these styles:


	Earlier chapter: Use the chapter name and number:

To learn how to create movies, see Chapter 4, “Composing Movies.”







	Earlier section: Use the section name followed by the page number:

For more information, see “Printing” on page 154.







	Earlier figure, table, or code listing: Use the number of the element followed by the page number:

For a summary of slot and drive numbers, see Table 1-2 (page 36).












Braces

Use braces, not curly brackets, to describe these symbols: { }.

When you need to distinguish between the opening and closing braces, use left brace
and right brace.




Brackets

Use brackets, not squarebrackets, to describe these symbols: [].

Don’t use brackets when you mean angle brackets (< >).




Capitalization

Three styles of capitalization are available: sentence style, title style, and all caps.


	Sentence-style capitalization:

This line provides an example of sentence-style capitalization.







	Title-style capitalization:

This Line Provides an Example of Title-Style Capitalization.







	All caps:

THIS LINE PROVIDES AN EXAMPLE OF ALL CAPS.









Don’t use all caps for emphasis.




Capitalization (Title Style)

Use title-style capitalization for book titles, part titles, chapter titles, section titles
(text heads), disc titles, running footers that use chapter titles, and cross-references to
such titles.


	
	References to specific book elements:

	In cross-references to a specific appendix or chapter, capitalize the word Appendix or
Chapter (exception to The Chicago Manual of Style). When you refer to appendixes or
chapters in general, don’t capitalize the word appendix or chapter:

See Chapter 2, “QuickTime on the Internet.”
See Appendix B for a list of specifications.
See the appendix for specifications.











	
	References to untitled sections:

	In cross-references to sections that never take a title (glossary, index, table of
contents, and so on), don’t capitalize the name of the section.







	
	What to capitalize:

	Follow these rules when you use title-style capitalization.

Capitalize every word except:



	Articles (a, an, the), unless an article is the first word or follows a colon


	Coordinating conjunctions(and, but, or, nor, for, yet and so)


	The word to in infinitives (How to Install Flow)


	The word as, regardless of the part of speech


	Words that always begin with a lower case letter, such as iPad


	Prepositions of four letters or fewer (at, by, for, from, in, into, of, off, on,
onto, out, over, to, up and with), except when the word is part of a verb phrase
or is used as another part of speech (such as an adverb, adjective, noun, or verb):

Starting Up the Computer
Logging In to the Server
Getting Started with Your MacBook Pro




















Capitalize:



	The first and last word, regardless of the part of speech:

For New Mac OS X Users
What the Finder Is For







	The second word in a hyphenated compound:

Correct: High-Level Events, 32-Bit Addressing
Incorrect: High-level Events, 32-bit Addressing
Exceptions: Built-in, Plug-in







	The words Are, If, Is, It, Than, That and This










Command Line

Write as two separate words when referring to the noun and use the hypenated form command-line
for and adjective.




Commas

Use a serial comma before and or or in a list of three or more items.

Correct: Apple sells MacBook Pro computers, the AirPort Extreme Card, and Final Cut Pro software.

Incorrect: Apple sells MacBook Pro computers, the AirPort Extreme Card and Final Cut Pro software.




Dash (em)

Use the em dash (—) to set off a word or phrase that interrupts or changes the direction
of a sentence or to set off a lengthy list that would otherwise make the syntax of a sentence
confusing. Don’t overuse em dashes. If the text being set off does not come at the end of the
sentence, use an em dash both before it and after it:

Setting just three edit points—the clip In point, the clip Out point, and the sequence In
point—gives you total control of the edit that’s performed.





To generate an em dash in a reStructured text, use ---.
Close up the em dash with the word before it and the word after it. Consult your department’s
guidelines for instructions on handling em dashes in HTML.




dash (en)

The en dash (–) is shorter than an em dash and longer than a hyphen. Use the en dash as
follows:


	
	Numbers in a range:

	Use an en dash between numbers that represent the endpoints of a continuous range:

bits 3–17, 2003–2005











	
	Compound adjectives:

	Use an en dash between the elements of a compound adjective when one of those elements is
itself two words:

desktop interface–specific instructions











	
	Keyboard shortcuts using combination keystrokes:

	Use an en dash between key names in a combination keystroke when at least one of those
names is two words or a hyphenated word:

Command–Option–Up Arrow, Command–Shift–double-click See also key, keys.











	
	Minus sign:

	Use an en dash as a minus sign (except in code font, where you use a hyphen):

–1, –65,535













To generate an en dash in ReStructured Text, use --. Close up the en
dash with the word (or number) before it and the word (or number) after it.




Kickstarter

A small application provided by the Kickstart paackage, which generates scaffolding for packages,
models, controllers and more.







          

      

      

    

  

    
      
          
            
  
Font conventions

The following font conventions are used in Flow’s documentation:


Italic


Used for URLs, filenames, file extensions, application and package names, emphasis
and newly introduced term.




Monospaced


Used for class, variable and property names, annotations and other parts of source
code which appear in the text.




Command Line


Examples which need to be entered at the command line are shown in a separate text
block. Make sure to not type the dollar sign $ when trying out the commands, as
it is the Unix prompt character.

$ ./flow kickstart:package Acme.MyPackage
Created .../Acme.Test/Classes/Acme/Test/Controller/StandardController.php















          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _images/AOPFramework_ProxyBuildingProcess.png
Aspect

Proxy.
[ e—— instus | 3 buds f—
Builder
ntesto containg
v
dectares o
consists
of
dectares s . uses Pointcut
Advice Pointaut el et

bules






_images/CoffeeBeanController.png
8006 Alist of coffee beans K
B (2] (18] [ + @ hupy/localhost/Quickstart/web/acme demojcoffec & | (Q- Google

« Created a new coffee bean.

A list of coffee beans

« Robusta

Delete. T

Create a new coffee bean






_images/AOPFramework_AdviceChain.png
aduiceMethodlsjainPoint

originathethodl..)

sresult






_images/CreateActionWithoutArgument.png
800 FLOW3 Exception o
[#1298012500: Required argument "newPost" is ot set.
More informaton
I TYPOB\FlowlMve\Exception\RequiredArgumentMissingException thrown in file

|Packages/Framework/TYPO3.Flow/Classes/TYPO3/Flow/Mvc/Controller/AbstractController.php in line 352.
[Reference code: 2015071416282047e75e

>enitseforecontrollerInvocation($request, Sresponse, Scontroller);
Scontroller->processRequest (Srequest, Sresponse);
Sthis->enitatterControllerInvocation(Srequest, Sresponse, Scontroller);
} catch (stophctionException Sexception) {

[Users owaldolctvWebstes/Tow DatarTemporaryDevelopment Cache/CodelFlow_Oblect_ClassesITYPO3_Fiow_ M. Dispacher php:
00102 /++ @var ActionRequest Srequest +/
00103: __Sfireuall->blocki)leas]Reavesta (Sreaest):






_images/CreateNewPost.png
Create new post

Author
Subject

Content

Publish Post





nav.xhtml

    
      Table of Contents


      
        		
          Flow 5.1 Documentation
        


        		
          Quickstart
        


        		
          The Definitive Guide
          
            		
              Part I: Introduction and Fundamentals
              
                		
                  Introduction
                


                		
                  Object-Oriented Programming
                


                		
                  Essential Design Patterns
                


                		
                  Domain-Driven Design
                


              


            


            		
              Part II: Getting Started
              
                		
                  Introduction
                


                		
                  Requirements
                


                		
                  Installation
                


                		
                  Configuration
                


                		
                  Modeling
                


                		
                  Kickstart
                


                		
                  Model and Repository
                


                		
                  Controller
                


                		
                  View
                


                		
                  Validation
                


                		
                  Routing
                


                		
                  Summary
                


              


            


            		
              Part III: Manual
              
                		
                  Architectural Overview
                


                		
                  Bootstrapping
                


                		
                  Package Management
                


                		
                  Configuration
                


                		
                  Object Framework
                


                		
                  Persistence
                


                		
                  HTTP Foundation
                


                		
                  Model View Controller
                


                		
                  Templating
                


                		
                  Validation
                


                		
                  Property Mapping
                


                		
                  Resource Management
                


                		
                  Routing
                


                		
                  Cache Framework
                


                		
                  Session Handling
                


                		
                  Command Line
                


                		
                  Aspect-Oriented Programming
                


                		
                  Security
                


                		
                  Internationalization & Localization Framework
                


                		
                  Error and Exception Handling
                


                		
                  Logging and Debugging (to be written)
                


                		
                  Signals and Slots
                


                		
                  Reflection
                


                		
                  Eel
                


                		
                  File Monitoring (to be written)
                


                		
                  Testing (to be written)
                


                		
                  Utility Functions
                


              


            


            		
              Part IV: Deployment and Administration (to be written)
            


            		
              Part V: Appendixes
              
                		
                  Flow Annotation Reference
                


                		
                  Flow Command Reference
                


                		
                  Contributing to Flow
                


                		
                  FluidAdaptor ViewHelper Reference
                


                		
                  Predefined Constants Reference
                


                		
                  Flow Signals Reference
                


                		
                  TYPO3 Fluid ViewHelper Reference
                


                		
                  Flow TypeConverter Reference
                


                		
                  Flow Validator Reference
                


                		
                  Coding Guidelines
                


                		
                  Release Notes
                


                		
                  ChangeLogs
                


              


            


            		
              Contributors
            


          


        


        		
          Publications Style Guide
          
            		
              About this Guide
            


            		
              Style and Usage
            


            		
              Font conventions
            


          


        


      


    
  

_static/plus.png





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down.png





_static/file.png





_images/Flow_Coding_Guidelines_on_one_page.png
et s 5.2 o e






_images/Http_ApplicationFlow.png
m Http\RequestHandler Http\Request Http\Response Http\Component

raw HTTP request—ﬂ—
run().

resolveRequestHandler()

e

handleRequest()—pr

- createFromEnvironment()

-~ - Http\Request. - - - - -

<<create>>

- Http\RESPONSE - = - <<= e e e o

handle(ComponentContext):

—-echoed OUtpUt= == - <= =4 == =x=mzcmsmeomaoas





_images/FreshBlogPackage.png
A freshly created Fluid template!

‘Some data set by the controller:

o bar
 baz






_images/LayoutTemplatePartial.png
Vot At v s o ccusa o ko G ke o 40 .St sl
Rand by, s ki sarct ot Lo pmc o ot ot |
Loy ke s vt coretessacgncg w10 dam rarury |
o e e e s sy o, 140

Lo i e v ot ssdencng s, 65 o raruemy |
o s v e kre cpa sy o 30t dam |
Vo, AL ver s o ccusa o koG ke o a0 e, S lal
Land gy 7 10 vt o ot Lre gm. kot o ot

30Av]





_images/Http_ComponentChain.png
= K8 2 = =
%.mu[m.uu.ﬂm

handie{CompanentLontext

[idlmwmmmm N\m\lzmselgﬂ

handie{ComponeniConox)-

’D»mmmmscompﬁmuﬂ

o





_images/DomainModel-3.png





_images/DomainModel-2.png
deseiption string
postss <Past>

e

e st
dates DateTine
authar steing
content steing
arments <Loments
tass Tos>

stotos teser





_images/DomainModel-5.png
ttle string
descripton stins
postss <Past>






_images/DomainModel-4.png
bl <>

(B g
cesave(Bio i
Cindctived
im0

postss <Pust>

addast §pust
cemave(Post fpusd)
Lindi

By Bios(Bies fios)
et i)
Cindbrevinss(Bos i)
Cniacentl Do §bis, it )






_images/Error_ReferenceCode.png
000 < [in] © neos.ioftest

500 Internal Server Error

500 Internal Server Error
An internal error occurred.

When contacting the maintainer of this application please
‘mention the following reference code:

201801221011080463¢8






_images/EditPost.png
80060 My Blog "
0 wy oo o

My Blog

Edit post “This is a new post”
Author
Bastian Waidelich

Subject
This is a new post

Content
And it was created with a blog built on the Flow Framework.

Update Post

Powerod by Flow






_images/CreateNewPostValidationError2.png
Create new post.
subject: This property is required.
author: This property is required.
content: This property is required.

Author

Subject

Content.






_images/CreateNewPostValidationError1.png
Create new post

Author

Subject

Content






_images/DomainModel-1.png
Post





_images/CreatedNewPost.png
600 My Blog o
My Blog

Created a new post.

This is a new post Edit | Delete

Example Post Edit  Delete

Create a new post

Powerad by Flow






_images/ddd-lifecycle2.png
modification

creation

active

-

transient

added to
repository

persistent
in memory

in the database

]

removed from
repository

deletion @





_static/ajax-loader.gif





_static/comment-close.png





_static/comment-bright.png





_static/down-pressed.png





_static/comment.png





_images/Welcome.png
FLOW Welcome

Getting Started

Here's how to get into the flow: Join the community

Contribute to Flow and Neos

Kickstart your first package Read the documentation

Go to /var/apache2/ntdocs/tutorial Meb/ e —_.,

and un

-/flow kickstart:package MyConpany.MyPackage I

t0 create a package with a standard controller Coding guidelines
Known issues

Test your controller Get involved

“MyCompany. MyPackage™ has either not yet been created or not activated. [Start athread in our forum!
Follow step 1 and reload this page.
Join us on Slack

If you named your package “SomethingElse” visit Reporta bug
htp:/ /tutortal.local/ SomethingElse/

Read the tutorial
Switch over to the Quickstart Tutorial to get the a first overview.

Deactivate the Welcome package (optional)

Deactivate the Welcome package with
./Flow package:deactivate Neos. Welcome

Afterwards make sure to remove the “Welcome" SubRoute definition from the
global routes in Configuration/ Routes.yaml.






_images/UpdatedPost.png
Updated the post.

This is a new post Edit Delete

Published on 2015-07-30 by Bastan Waidelch





_images/ddd-lifecycle1.png
creation

modification active

deletion





_images/Welcome1.png
FLOW Welcome

Getting Started

Here's how to get into the flow: Join the community

Contribute to Flow and Neos

Kickstart your first package Read the documentation

Go to /var/apache2/ntdocs/tutorial Meb/ e —_.,

and un

-/flow kickstart:package MyConpany.MyPackage I

t0 create a package with a standard controller Coding guidelines
Known issues

Test your controller Get involved

“MyCompany. MyPackage™ has either not yet been created or not activated. [Start athread in our forum!
Follow step 1 and reload this page.
Join us on Slack

If you named your package “SomethingElse” visit Reporta bug
htp:/ /tutortal.local/ SomethingElse/

Read the tutorial
Switch over to the Quickstart Tutorial to get the a first overview.

Deactivate the Welcome package (optional)

Deactivate the Welcome package with
./Flow package:deactivate Neos. Welcome

Afterwards make sure to remove the “Welcome" SubRoute definition from the
global routes in Configuration/ Routes.yaml.






_images/PostIndex.png
80060 My Blog "
0 wy oo

Example Post Edit | Delete

Create a new post

Powerod by Flow






_images/PostActionRoute1URI.png
This is a new post
Published on 2015-07-30 by Bastin Waidelch

Creato a new pogt

flow.dev/posts/new A





_images/Security_BasicAuthenticationProcess.png
Authentication AuthenticationProvider Authentication\ Authentication
i i Tokeninterface

E—
I

gethutnentication
[ Tokens)

upnnmnﬂl!mu“ﬂ

authenticate(Stoken) ﬂ

Tokenitertace]

onhutnenticationsuccess)






_images/RoutingLogTail.png
FLOW.
LG
L3
Lo
Lo

mc - /Users/Shared/Sites — tail — 145x8

--- Launching FLOWS in Development context.
Router routeQ): Route “Elog :: Blog actions 2" matched the request path */blogs/fooblog/edit”.

Dispatching signal. F3\FLOWS\Core\Bootstrap: emitFinishecNormalRun

o slot F3\FLOW3\Core\LockManager :unlockSite.
Shutting down






_images/Security_FilterFirewall.png
Autharization\ Security\ Autharization\
i SN

Hmuzmam-uml [ 1o-» 1 R

I ——— i
W—mummﬂ!
- AD——W:H]

-

- ecessDeniedException-






_images/Security_BasicAuthorizationProcess.png
£ o game et
ntercepted via A0P.

v

isGranted( MethodPriviegelterface’, SjoinPcing—

~boclean

..invoke orginal method f no
exception hasbeen thiown






_images/PHP_TrueFalse.jpg





_images/MyFirstBlog.png
Posts of "My Blog"

1. Example Post






_images/Persistence_PersistenceProcess.png
FLOW3

BlogController | Blog | BlogRepository IstenceManager

etAllmplementationClassNamesForlnterfacel
<..___..___..___..___.__..___..___.1.__"
<..___.~_.~_.~_._§LGMM~___..___..___.::.

persistobjects(f——y)

processDeletedObiectsf——

BlogController | Blog | BlogRepository | FLOWS. | PersistenceManager

ReflectionService | ObjectManager






_images/Persistence_BlogDomainModel.png
L e Comment






_images/Persistence_QueryProcess.png
BlogController | BlogRepository | QueryFactory | Query | QueryObjectModelFactory kend

PersistenceManager DataMapper

create constraints

array with object data

array B

BlogController | BlogRepository | QueryFactory QueryobjectModelFactory tenceManager e DataMapper | Reflectionservice | Pei






